89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

      review-article

      1 , , 1

      Journal of Neuroinflammation

      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of tumor necrosis factor (TNF) as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1) is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF) or transmembrane TNF (tmTNF), with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD), Parkinson's (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

          Related collections

          Most cited references 163

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.

          Apoptosis induced by TNF-receptor I (TNFR1) is thought to proceed via recruitment of the adaptor FADD and caspase-8 to the receptor complex. TNFR1 signaling is also known to activate the transcription factor NF-kappa B and promote survival. The mechanism by which this decision between cell death and survival is arbitrated is not clear. We report that TNFR1-induced apoptosis involves two sequential signaling complexes. The initial plasma membrane bound complex (complex I) consists of TNFR1, the adaptor TRADD, the kinase RIP1, and TRAF2 and rapidly signals activation of NF-kappa B. In a second step, TRADD and RIP1 associate with FADD and caspase-8, forming a cytoplasmic complex (complex II). When NF-kappa B is activated by complex I, complex II harbors the caspase-8 inhibitor FLIP(L) and the cell survives. Thus, TNFR1-mediated-signal transduction includes a checkpoint, resulting in cell death (via complex II) in instances where the initial signal (via complex I, NF-kappa B) fails to be activated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes

             B Bennett,  R Malefyt,  la De (1991)
            In the present study we demonstrate that human monocytes activated by lipopolysaccharides (LPS) were able to produce high levels of interleukin 10 (IL-10), previously designated cytokine synthesis inhibitory factor (CSIF), in a dose dependent fashion. IL-10 was detectable 7 h after activation of the monocytes and maximal levels of IL-10 production were observed after 24-48 h. These kinetics indicated that the production of IL-10 by human monocytes was relatively late as compared to the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, tumor necrosis factor alpha (TNF alpha), and granulocyte colony-stimulating factor (G-CSF), which were all secreted at high levels 4-8 h after activation. The production of IL-10 by LPS activated monocytes was, similar to that of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF), and G-CSF, inhibited by IL-4. Furthermore we demonstrate here that IL-10, added to monocytes, activated by interferon gamma (IFN-gamma), LPS, or combinations of LPS and IFN-gamma at the onset of the cultures, strongly inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF at the transcriptional level. Viral-IL-10, which has similar biological activities on human cells, also inhibited the production of TNF alpha and GM-CSF by monocytes following LPS activation. Activation of monocytes by LPS in the presence of neutralizing anti-IL-10 monoclonal antibodies resulted in the production of higher amounts of cytokines relative to LPS treatment alone, indicating that endogenously produced IL-10 inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF. In addition, IL-10 had autoregulatory effects since it strongly inhibited IL-10 mRNA synthesis in LPS activated monocytes. Furthermore, endogenously produced IL-10 was found to be responsible for the reduction in class II major histocompatibility complex (MHC) expression following activation of monocytes with LPS. Taken together our results indicate that IL-10 has important regulatory effects on immunological and inflammatory responses because of its capacity to downregulate class II MHC expression and to inhibit the production of proinflammatory cytokines by monocytes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Glutamate neurotoxicity and diseases of the nervous system.

               Andrew D Choi (1988)
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2008
                17 October 2008
                : 5
                : 45
                Affiliations
                [1 ]Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA
                Article
                1742-2094-5-45
                10.1186/1742-2094-5-45
                2577641
                18925972
                Copyright © 2008 McCoy and Tansey; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review

                Neurosciences

                Comments

                Comment on this article