79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids.

          Author Summary

          The rapid global rise of infections caused by Escherichia coli that are resistant to clinically relevant antimicrobials, including third-generation cephalosporins, is cause for concern. The intestinal tract of livestock, in particular poultry, is an important reservoir for drug resistant E. coli, but it is unknown to what extent these bacteria can spread to humans. Food is thought to be an important source because drug-resistant E. coli have been detected in animals raised for meat consumption and in meat products. Previous studies that used traditional, low-resolution, genetic typing methods found that drug resistant E. coli present in humans and poultry were indistinguishable from each other, suggesting dissemination of these bacteria through the food-chain to humans. However, by applying high-resolution, whole-genome sequencing methods, we did not find evidence for such transmission of bacteria through the food-chain. Instead, by employing a novel approach for the reconstruction of mobile genetic elements from whole-genome sequence data, we discovered that genetically unrelated E. coli isolates from both humans and animal sources carried nearly identical plasmids that encode third-generation cephalosporin resistance determinants. Our data suggest that cephalosporin resistance is mainly disseminated via the transfer of mobile genetic elements between animals and humans.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak.

          Isolates of methicillin-resistant Staphylococcus aureus (MRSA) belonging to a single lineage are often indistinguishable by means of current typing techniques. Whole-genome sequencing may provide improved resolution to define transmission pathways and characterize outbreaks. We investigated a putative MRSA outbreak in a neonatal intensive care unit. By using rapid high-throughput sequencing technology with a clinically relevant turnaround time, we retrospectively sequenced the DNA from seven isolates associated with the outbreak and another seven MRSA isolates associated with carriage of MRSA or bacteremia in the same hospital. We constructed a phylogenetic tree by comparing single-nucleotide polymorphisms (SNPs) in the core genome to a reference genome (an epidemic MRSA clone, EMRSA-15 [sequence type 22]). This revealed a distinct cluster of outbreak isolates and clear separation between these and the nonoutbreak isolates. A previously missed transmission event was detected between two patients with bacteremia who were not part of the outbreak. We created an artificial "resistome" of antibiotic-resistance genes and demonstrated concordance between it and the results of phenotypic susceptibility testing; we also created a "toxome" consisting of toxin genes. One outbreak isolate had a hypermutator phenotype with a higher number of SNPs than the other outbreak isolates, highlighting the difficulty of imposing a simple threshold for the number of SNPs between isolates to decide whether they are part of a recent transmission chain. Whole-genome sequencing can provide clinically relevant data within a time frame that can influence patient care. The need for automated data interpretation and the provision of clinically meaningful reports represent hurdles to clinical implementation. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Extended-Spectrum β-Lactamase Genes of Escherichia coli in Chicken Meat and Humans, the Netherlands

            We determined the prevalence and characteristics of extended-spectrum β-lactamase (ESBL) genes of Enterobacteriaceae in retail chicken meat and humans in the Netherlands. Raw meat samples were obtained, and simultaneous cross-sectional surveys of fecal carriage were performed in 4 hospitals in the same area. Human blood cultures from these hospitals that contained ESBL genes were included. A high prevalence of ESBL genes was found in chicken meat (79.8%). Genetic analysis showed that the predominant ESBL genes in chicken meat and human rectal swab specimens were identical. These genes were also frequently found in human blood culture isolates. Typing results of Escherichia coli strains showed a high degree of similarity with strains from meat and humans. These findings suggest that the abundant presence of ESBL genes in the food chain may have a profound effect on future treatment options for a wide range of infections caused by gram-negative bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The diversity of conjugative relaxases and its application in plasmid classification.

              Bacterial conjugation is an efficient and sophisticated mechanism of DNA transfer among bacteria. While mobilizable plasmids only encode a minimal MOB machinery that allows them to be transported by other plasmids, conjugative plasmids encode a complete set of transfer genes (MOB1T4SS). The only essential ingredient of the MOB machinery is the relaxase, the protein that initiates and terminates conjugative DNA processing. In this review we compared the sequences and properties of the relaxase proteins contained in gene sequence databases. Proteins were arranged in families and phylogenetic trees constructed from the family alignments. This allowed the classification of conjugative transfer systems in six MOB families:MOB(F), MOB(H), MOB(Q), MOB(C), MOB(P) and MOB(V). The main characteristics of each family were reviewed. The phylogenetic relationships of the coupling proteins were also analysed and resulted in phylogenies congruent to those of the cognate relaxases. We propose that the sequences of plasmid relaxases can be used for plasmid classification. We hope our effort will provide researchers with a useful tool for further mining and analysing the plasmid universe both experimentally and in silico.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2014
                18 December 2014
                : 10
                : 12
                : e1004776
                Affiliations
                [1 ]Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
                [2 ]Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Sodercan-CSIC, Santander, Spain
                [3 ]Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
                [4 ]BGI-Shenzhen, Shenzhen, China
                [5 ]BGI-Europe, Copenhagen, Denmark
                [6 ]Norwegian High-Throughput Sequencing Centre, Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
                MicroTrek Incorporated, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MJMB RJLW FdlC WvS. Performed the experiments: JS YD JH YL NL ATK. Analyzed the data: MdB VFL MdT. Contributed reagents/materials/analysis tools: JS WD DJJH ACF. Wrote the paper: MdB VFL MdT WD DJJH ACF MJMB RJLW FdlC WvS.

                Article
                PGENETICS-D-14-01347
                10.1371/journal.pgen.1004776
                4270446
                25522320
                74eaced2-9394-4a1f-8acc-665c6afd2f9e
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 May 2014
                : 24 September 2014
                Page count
                Pages: 17
                Funding
                This work was supported by The European Union Seventh Framework ( http://ec.europa.eu/research/fp7/) Programmes “Evolution and Transfer of Antibiotic Resistance” (EvoTAR; FP7-HEALTH-2011-single-stage; grant number 282004; to MdB, VFL, MdT, RJLW, FdlC, and WvS), and “Plaswires” (FP7 ICT 2009 4; grant number 248919; to VFL, MdT, and FdlC), the Spanish Ministry of Education ( http://www.mecd.gob.es/portada-mecd/) (BFU2011 26608; to VFL, MdT, and FdlC), and The Netherlands Organisation for Research and Development ZonMw ( http://www.nwo.nl/) (Contract number 50-51700-98-053; to WD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Biochemistry
                DNA
                Forms of DNA
                Plasmids
                Computational Biology
                Comparative Genomics
                Genome Analysis
                Genome Evolution
                Ecology
                Food Chains
                Evolutionary Biology
                Population Genetics
                Genetic Polymorphism
                Molecular Evolution
                Genetics
                Genetic Elements
                Mobile Genetic Elements
                Genomics
                Microbial Genomics
                Bacterial Genomics
                Gene Transfer
                Microbiology
                Bacteriology
                Gram Negative Bacteria
                Microbial Control
                Antimicrobial Resistance
                Antibiotic Resistance
                Antimicrobials
                Antibiotics
                Medical Microbiology
                Plant Science
                Plant Pathology
                Infectious Disease Epidemiology
                Veterinary Science
                Veterinary Microbiology
                Medicine and Health Sciences
                Epidemiology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files. All sequence data have been deposited at DDBJ/EMBL/GenBank. Accession numbers for the Illumina sequence data are listed in Table 1. Pacific Biosciences sequence data have been deposited with accession numbers PRJNA260957 for strain 53C and PRJNA260958 for strain FAP1.

                Genetics
                Genetics

                Comments

                Comment on this article