14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The last sea nomads of the Indonesian archipelago: genomic origins and dispersal

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Bajo, the world’s largest remaining sea nomad group, are scattered across hundreds of recently settled communities in Island Southeast Asia, along the coasts of Indonesia, Malaysia and the Philippines. With a significant role in historical trading, the Bajo lived until recently as nomads, spending their entire lives on houseboats while moving long distances to fish and trade. Along the routes they traveled, the Bajo settled and intermarried with local land-based groups, leading to ‘maritime creolization’, a process whereby Bajo communities retained their culture, but assimilated – and frequently married into – local groups. The origins of the Bajo have remained unclear despite several hypotheses from oral tradition, culture and language, all currently without supporting genetic evidence. Here, we report genome-wide SNP analyses on 73 Bajo individuals from three communities across Indonesia – the Derawan of Northeast Borneo, the Kotabaru of Southeast Borneo and the Kendari of Southeast Sulawesi, with 87 new samples from three populations surrounding the area where these Bajo peoples live. The Bajo likely share a common connection with Southern Sulawesi, but crucially, each Bajo community also exhibits unique genetic contributions from neighboring populations.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Second-generation PLINK: rising to the challenge of larger and richer datasets

          PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genetic atlas of human admixture history.

            Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed by using genetic data alone and encompassing over 100 events occurring over the past 4000 years. We identified events whose dates and participants suggest they describe genetic impacts of the Mongol empire, Arab slave trade, Bantu expansion, first millennium CE migrations in Eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies.

              The length of the human generation interval is a key parameter when using genetics to date population divergence events. However, no consensus exists regarding the generation interval length, and a wide variety of interval lengths have been used in recent studies. This makes comparison between studies difficult, and questions the accuracy of divergence date estimations. Recent genealogy-based research suggests that the male generation interval is substantially longer than the female interval, and that both are greater than the values commonly used in genetics studies. This study evaluates each of these hypotheses in a broader cross-cultural context, using data from both nation states and recent hunter-gatherer societies. Both hypotheses are supported by this study; therefore, revised estimates of male, female, and overall human generation interval lengths are proposed. The nearly universal, cross-cultural nature of the evidence justifies using these proposed estimates in Y-chromosomal, mitochondrial, and autosomal DNA-based population divergence studies.
                Bookmark

                Author and article information

                Journal
                Eur J Hum Genet
                Eur. J. Hum. Genet
                European Journal of Human Genetics
                Nature Publishing Group
                1018-4813
                1476-5438
                August 2017
                17 May 2017
                1 August 2017
                : 25
                : 8
                : 1004-1010
                Affiliations
                [1 ]Equipe de Médecine Evolutive, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse UMR-5288, Université de Toulouse , Toulouse, France
                [2 ]Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology , Jakarta, Indonesia
                [3 ]Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University , Palmerston North, New Zealand
                [4 ]University of Halu Oleo , Kendari, Indonesia
                [5 ]UFR des Lettres, Langues, Arts et Sciences Humaines, Université de La Rochelle , La Rochelle, France
                [6 ]Department of Medical Biology, Faculty of Medicine, University of Indonesia , Jakarta, Indonesia
                Author notes
                [* ]Equipe de Médecine Evolutive, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse UMR-5288 , 37 Allées Jules Guesde, Toulouse 31000, France. Tel: +33 5 61 14 55 11; Fax:+33 5 61 14 59 79; E-mail: francois-xavier.ricaut@ 123456univ-tlse3.fr
                Article
                ejhg201788
                10.1038/ejhg.2017.88
                5567155
                28513608
                74f4c8d1-eeea-43fe-9d0a-69363d293000
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 03 February 2017
                : 31 March 2017
                : 13 April 2017
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article