26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Demographic models and IPCC climate projections predict the decline of an emperor penguin population

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962-2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from approximately 6,000 to approximately 400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Keeping up with a warming world; assessing the rate of adaptation to climate change.

          The pivotal question in the debate on the ecological effects of climate change is whether species will be able to adapt fast enough to keep up with their changing environment. If we establish the maximal rate of adaptation, this will set an upper limit to the rate at which temperatures can increase without loss of biodiversity. The rate of adaptation will primarily be set by the rate of microevolution since (i) phenotypic plasticity alone is not sufficient as reaction norms will no longer be adaptive and hence microevolution on the reaction norm is needed, (ii) learning will be favourable to the individual but cannot be passed on to the next generations, (iii) maternal effects may play a role but, as with other forms of phenotypic plasticity, the response of offspring to the maternal cues will no longer be adaptive in a changing environment, and (iv) adaptation via immigration of individuals with genotypes adapted to warmer environments also involves microevolution as these genotypes are better adapted in terms of temperature, but not in terms of, for instance, photoperiod.Long-term studies on wild populations with individually known animals play an essential role in detecting and understanding the temporal trends in life-history traits, and to estimate the heritability of, and selection pressures on, life-history traits. However, additional measurements on other trophic levels and on the mechanisms underlying phenotypic plasticity are needed to predict the rate of microevolution, especially under changing conditions. Using this knowledge on heritability of, and selection on, life-history traits, in combination with climate scenarios, we will be able to predict the rate of adaptation for different climate scenarios. The final step is to use ecoevolutionary dynamical models to make the link to population viability and from there to biodiversity loss for those scenarios where the rate of adaptation is insufficient.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A sequential algorithm for testing climate regime shifts

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emperor penguins and climate change.

              Variations in ocean-atmosphere coupling over time in the Southern Ocean have dominant effects on sea-ice extent and ecosystem structure, but the ultimate consequences of such environmental changes for large marine predators cannot be accurately predicted because of the absence of long-term data series on key demographic parameters. Here, we use the longest time series available on demographic parameters of an Antarctic large predator breeding on fast ice and relying on food resources from the Southern Ocean. We show that over the past 50 years, the population of emperor penguins (Aptenodytes forsteri) in Terre Adélie has declined by 50% because of a decrease in adult survival during the late 1970s. At this time there was a prolonged abnormally warm period with reduced sea-ice extent. Mortality rates increased when warm sea-surface temperatures occurred in the foraging area and when annual sea-ice extent was reduced, and were higher for males than for females. In contrast with survival, emperor penguins hatched fewer eggs when winter sea-ice was extended. These results indicate strong and contrasting effects of large-scale oceanographic processes and sea-ice extent on the demography of emperor penguins, and their potential high susceptibility to climate change.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 10 2009
                February 10 2009
                February 10 2009
                January 26 2009
                : 106
                : 6
                : 1844-1847
                Article
                10.1073/pnas.0806638106
                2644125
                19171908
                7520ec85-e9ed-41b2-91ec-3b10793b95c2
                © 2009
                History

                Comments

                Comment on this article