42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emergence of macroscopic directed motion in populations of motile colloids

      Preprint
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          From the formation of animal flocks to the emergence of coordinate motion in bacterial swarms, at all scales populations of motile organisms display coherent collective motion. This consistent behavior strongly contrasts with the difference in communication abilities between the individuals. Guided by this universal feature, physicists have proposed that solely alignment rules at the individual level could account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviors have been systematically found in experiments including the formation of vortices, fluctuating swarms, clustering and swirling. All these model systems predominantly rely on actual collisions to display collective motion. As a result, the potential local alignment rules are entangled with more complex, often unknown, interactions. The large-scale behavior of the populations therefore depends on these uncontrolled microscopic couplings. Here, we demonstrate a new phase of active matter. We reveal that dilute populations of millions of colloidal rollers self-organize to achieve coherent motion along a unique direction, with very few density and velocity fluctuations. Identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic flock at low densities, or in that of a homogenous polar phase at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations. Our experiments demonstrate that genuine physical interactions at the individual level are sufficient to set homogeneous active populations into stable directed motion.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Novel type of phase transition in a system of self-driven particles

          A simple model with a novel type of dynamics is introduced in order to investigate the emergence of self-ordered motion in systems of particles with biologically motivated interaction. In our model particles are driven with a constant absolute velocity and at each time step assume the average direction of motion of the particles in their neighborhood with some random perturbation (\(\eta\)) added. We present numerical evidence that this model results in a kinetic phase transition from no transport (zero average velocity, \(| {\bf v}_a | =0\)) to finite net transport through spontaneous symmetry breaking of the rotational symmetry. The transition is continuous since \(| {\bf v}_a |\) is found to scale as \((\eta_c-\eta)^\beta\) with \(\beta\simeq 0.45\).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Collective motion

            We review the observations and the basic laws describing the essential aspects of collective motion -- being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large-scale vortex lattice emerging from collectively moving microtubules.

              Spontaneous collective motion, as in some flocks of bird and schools of fish, is an example of an emergent phenomenon. Such phenomena are at present of great interest and physicists have put forward a number of theoretical results that so far lack experimental verification. In animal behaviour studies, large-scale data collection is now technologically possible, but data are still scarce and arise from observations rather than controlled experiments. Multicellular biological systems, such as bacterial colonies or tissues, allow more control, but may have many hidden variables and interactions, hindering proper tests of theoretical ideas. However, in systems on the subcellular scale such tests may be possible, particularly in in vitro experiments with only few purified components. Motility assays, in which protein filaments are driven by molecular motors grafted to a substrate in the presence of ATP, can show collective motion for high densities of motors and attached filaments. This was demonstrated recently for the actomyosin system, but a complete understanding of the mechanisms at work is still lacking. Here we report experiments in which microtubules are propelled by surface-bound dyneins. In this system it is possible to study the local interaction: we find that colliding microtubules align with each other with high probability. At high densities, this alignment results in self-organization of the microtubules, which are on average 15 µm long, into vortices with diameters of around 400 µm. Inside the vortices, the microtubules circulate both clockwise and anticlockwise. On longer timescales, the vortices form a lattice structure. The emergence of these structures, as verified by a mathematical model, is the result of the smooth, reptation-like motion of single microtubules in combination with local interactions (the nematic alignment due to collisions)--there is no need for long-range interactions. Apart from its potential relevance to cortical arrays in plant cells and other biological situations, our study provides evidence for the existence of previously unsuspected universality classes of collective motion phenomena.
                Bookmark

                Author and article information

                Journal
                08 November 2013
                Article
                10.1038/nature12673
                24201282
                1311.2017
                7521b4a3-297d-4767-aff9-7551ad8158f2

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Nature 503, 95-98 (2013)
                cond-mat.soft

                Condensed matter
                Condensed matter

                Comments

                Comment on this article