1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of methods to assign cell type labels to cell clusters from single-cell RNA-sequencing data

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Identification of cell type subpopulations from complex cell mixtures using single-cell RNA-sequencing (scRNA-seq) data includes automated computational steps like data normalization, dimensionality reduction and cell clustering. However, assigning cell type labels to cell clusters is still conducted manually by most researchers, resulting in limited documentation, low reproducibility and uncontrolled vocabularies. Two bottlenecks to automating this task are the scarcity of reference cell type gene expression signatures and the fact that some dedicated methods are available only as web servers with limited cell type gene expression signatures.

          Methods: In this study, we benchmarked four methods (CIBERSORT, GSEA, GSVA, and ORA) for the task of assigning cell type labels to cell clusters from scRNA-seq data. We used scRNA-seq datasets from liver, peripheral blood mononuclear cells and retinal neurons for which reference cell type gene expression signatures were available.

          Results: Our results show that, in general, all four methods show a high performance in the task as evaluated by receiver operating characteristic curve analysis (average area under the curve (AUC) = 0.94, sd = 0.036), whereas precision-recall curve analyses show a wide variation depending on the method and dataset (average AUC = 0.53, sd = 0.24).

          Conclusions: CIBERSORT and GSVA were the top two performers. Additionally, GSVA was the fastest of the four methods and was more robust in cell type gene expression signature subsampling simulations. We provide an extensible framework to evaluate other methods and datasets at .

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Logic of Inductive Inference

            R Fisher (1935)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data

              Background: The commercially available 10x Genomics protocol to generate droplet-based single-cell RNA-seq (scRNA-seq) data is enjoying growing popularity among researchers. Fundamental to the analysis of such scRNA-seq data is the ability to cluster similar or same cells into non-overlapping groups. Many competing methods have been proposed for this task, but there is currently little guidance with regards to which method to use. Methods: Here we use one gold standard 10x Genomics dataset, generated from the mixture of three cell lines, as well as three silver standard 10x Genomics datasets generated from peripheral blood mononuclear cells to examine not only the accuracy but also robustness of a dozen methods. Results: We found that some methods, including Seurat and Cell Ranger, outperform other methods, although performance seems to be dependent on the complexity of the studied system. Furthermore, we found that solutions produced by different methods have little in common with each other. Conclusions: In light of this, we conclude that the choice of clustering tool crucially determines interpretation of scRNA-seq data generated by 10x Genomics. Hence practitioners and consumers should remain vigilant about the outcome of 10x Genomics scRNA-seq analysis.
                Bookmark

                Author and article information

                Journal
                F1000Research
                F1000Res
                F1000 ( Faculty of 1000 Ltd)
                2046-1402
                2019
                March 15 2019
                : 8
                : 296
                Article
                10.12688/f1000research.18490.1
                31508207
                7533be0a-78b3-4cad-831c-209824bc87e8
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article