125
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SLAB51 Probiotic Formulation Activates SIRT1 Pathway Promoting Antioxidant and Neuroprotective Effects in an AD Mouse Model

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut-brain axis is a bidirectional communication network functionally linking the gut and the central nervous system (CNS). Based on this, the rational manipulation of intestinal microbiota represents a novel attractive therapeutic strategy for the treatment of CNS-associated disorders. In this study, we explored the properties of a probiotic formulation (namely SLAB51) in counteracting brain oxidative damages associated with Alzheimer’s disease (AD). Specifically, transgenic AD mice (3xTg-AD) were treated with SLAB51 and the effects on protein oxidation, neuronal antioxidant defence and repair systems were monitored, with the particular focus on the role of SIRT1-related pathways. We demonstrated that SLAB51 markedly reduced oxidative stress in AD mice brain by activating SIRT1-dependent mechanisms, thus representing a promising therapeutic adjuvant in AD treatment.

          Electronic supplementary material

          The online version of this article (10.1007/s12035-018-0973-4) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Negative control of p53 by Sir2alpha promotes cell survival under stress.

          The NAD-dependent histone deacetylation of Sir2 connects cellular metabolism with gene silencing as well as aging in yeast. Here, we show that mammalian Sir2alpha physically interacts with p53 and attenuates p53-mediated functions. Nicotinamide (Vitamin B3) inhibits an NAD-dependent p53 deacetylation induced by Sir2alpha, and also enhances the p53 acetylation levels in vivo. Furthermore, Sir2alpha represses p53-dependent apoptosis in response to DNA damage and oxidative stress, whereas expression of a Sir2alpha point mutant increases the sensitivity of cells in the stress response. Thus, our findings implicate a p53 regulatory pathway mediated by mammalian Sir2alpha. These results have significant implications regarding an important role for Sir2alpha in modulating the sensitivity of cells in p53-dependent apoptotic response and the possible effect in cancer therapy.
            • Record: found
            • Abstract: found
            • Article: not found

            SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis.

            A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.
              • Record: found
              • Abstract: found
              • Article: not found

              Redox regulation of SIRT1 in inflammation and cellular senescence.

              Sirtuin 1 (SIRT1) regulates inflammation, aging (life span and health span), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging, in which oxidative stress occurs. SIRT1 is regulated by a NAD(+)-dependent DNA repair enzyme, poly(ADP-ribose) polymerase-1 (PARP1), and subsequent NAD(+) depletion by oxidative stress may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to posttranslational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65, and FOXO3, thereby enhancing the inflammatory, prosenescent, and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox posttranslational modifications of SIRT1 and its roles in PARP1 and NF-κB activation, and FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging, are discussed. Furthermore, we have also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

                Author and article information

                Contributors
                +390737403247 , laura.bonfili@unicam.it
                Journal
                Mol Neurobiol
                Mol. Neurobiol
                Molecular Neurobiology
                Springer US (New York )
                0893-7648
                1559-1182
                28 February 2018
                28 February 2018
                2018
                : 55
                : 10
                : 7987-8000
                Affiliations
                ISNI 0000 0000 9745 6549, GRID grid.5602.1, School of Biosciences and Veterinary Medicine, , University of Camerino, ; Via Gentile III da Varano, 62032 Camerino, MC Italy
                Author information
                http://orcid.org/0000-0002-9542-4310
                Article
                973
                10.1007/s12035-018-0973-4
                6132798
                29492848
                753c5591-fe4b-40fa-b75b-3090641819c7
                © The Author(s) 2018

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 30 October 2017
                : 19 February 2018
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2018

                Neurosciences
                alzheimer’s disease,oxidation,sirt1,probiotics
                Neurosciences
                alzheimer’s disease, oxidation, sirt1, probiotics

                Comments

                Comment on this article

                Related Documents Log