15
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Germline SDHB and SDHD mutations in pheochromocytoma and paraganglioma patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pheochromocytoma and paragangliomas (PCC/PGL) are neuroendocrine tumors that arise from chromaffin cells of the adrenal medulla and sympathetic/parasympathetic ganglia, respectively. Of clinical relevance regarding diagnosis is the highly variable presentation of symptoms in PCC/PGL patients. To date, the clear-cut correlations between the genotypes and phenotypes of PCC/PGL have not been entirely established. In this study, we reviewed the medical records of PCC/PGL patients with pertinent clinical, laboratory and genetic information. Next-generation sequencing (NGS) performed on patient samples revealed specific germline mutations in the SDHB (succinate dehydrogenase complex iron-sulfur subunit B) and SDHD (succinate dehydrogenase complex subunit D) genes and these mutations were validated by Sanger sequencing. Of the 119 patients, two were identified with SDHB mutation and one with SDHD mutation. Immunohistochemical (IHC) staining was used to analyze the expression of these mutated genes. The germline mutations identified in the SDH genes were c343C>T and c.541-542A>G in the SDHB gene and c.334-337delACTG in the SDHD gene. IHC staining of tumors from the c.343C>T and c.541-2A>G carriers showed positive expression of SDHB. Tumors from the c.334-337delACTG carrier showed no expression of SDHD and a weak diffused staining pattern for SDHB. We strongly recommend genetic testing for suspected PCC/PGL patients with a positive family history, early onset of age, erratic hypertension, recurrence or multiple tumor sites and loss of SDHB and/or SDHD expression. Tailored personal management should be conducted once a patient is confirmed as an SDHB and/or SDHD mutation carrier or diagnosed with PCC/PGL.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma.

          We report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine.
            • Record: found
            • Abstract: found
            • Article: found

            Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma.

            Hereditary paraganglioma (PGL) is characterized by the development of benign, vascularized tumors in the head and neck. The most common tumor site is the carotid body (CB), a chemoreceptive organ that senses oxygen levels in the blood. Analysis of families carrying the PGL1 gene, described here, revealed germ line mutations in the SDHD gene on chromosome 11q23. SDHD encodes a mitochondrial respiratory chain protein-the small subunit of cytochrome b in succinate-ubiquinone oxidoreductase (cybS). In contrast to expectations based on the inheritance pattern of PGL, the SDHD gene showed no evidence of imprinting. These findings indicate that mitochondria play an important role in the pathogenesis of certain tumors and that cybS plays a role in normal CB physiology.
              • Record: found
              • Abstract: found
              • Article: not found

              Update on Adrenal Tumours in 2017 World Health Organization (WHO) of Endocrine Tumours.

              Alfred Lam (2017)
              The fourth edition of the World Health Organization (WHO) classification of endocrine tumours contains substantial new findings for the adrenal tumours. The tumours are presented in two chapters labelled as "Tumours of the adrenal cortex" and "Tumours of the adrenal medulla and extra-adrenal paraganglia." Tumours of the adrenal cortex are classified as cortical carcinoma, cortical adenoma, sex cord stromal tumours, adenomatoid tumour, mesenchymal and stromal tumours (myelolipoma and schwannoma), haematological tumours, and secondary tumours. Amongst them, schwannoma and haematological tumours are newly documented. The major updates in adrenal cortical lesions are noted in the genetics of the cortical carcinoma and cortical adenoma based on the data from The Cancer Genome Atlas (TCGA). Also, a system for differentiation of oncocytoma from oncocytic cortical carcinoma is adopted. Tumours of the adrenal medulla and extra-adrenal paraganglia comprise pheochromocytoma, paraganglioma (head and neck paraganglioma and sympathetic paraganglioma), neuroblastic tumours (neuroblastoma, nodular ganglioneuroblastoma, intermixed ganglioneuroblastoma, and ganglioneuroma), composite pheochromocytoma, and composite paraganglioma. In this group, neuroblastic tumours are newly included in the classification. The clinical features, histology, associated pathologies, genetics, and predictive factors of pheochromocytoma and paraganglioma are the main changes introduced in this chapter of WHO classification of endocrine tumours. The term "metastatic pheochromocytoma/paraganglioma" is used to replace "malignant pheochromocytoma/paraganglioma." Also, composite pheochromocytoma and composite paraganglioma are now documented in separate sections instead of one. Overall, the new classification incorporated new data on pathology, clinical behaviour, and genetics of the adrenal tumours that are important for current management of patients with these tumours.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                December 2018
                04 October 2018
                : 7
                : 12
                : 1217-1225
                Affiliations
                [1 ]Department of Urology , Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
                [2 ]Geneplus-Beijing Institute , Beijing, People’s Republic of China
                [3 ]Department of Bio-Medical Sciences , Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
                Author notes
                Correspondence should be addressed to J Jiang: jiangjun_64@ 123456163.com
                Article
                EC-18-0325
                10.1530/EC-18-0325
                6240141
                30352407
                754168fa-1316-45d2-8e6a-b783cc07ed0a
                © 2018 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 20 September 2018
                : 04 October 2018
                Categories
                Research

                pcc/pgl,sdhb,sdhd,genotype–phenotype correlation
                pcc/pgl, sdhb, sdhd, genotype–phenotype correlation

                Comments

                Comment on this article

                Related Documents Log