15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Development of Solid-State Storage for Cell-Free Expression Systems

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
            • Record: found
            • Abstract: found
            • Article: not found

            CRISPR-Cas12–based detection of SARS-CoV-2

            An outbreak of betacoronavirus SARS-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR-Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated our method using contrived reference samples and clinical samples from US patients, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections. Our CRISPR-based DETECTR assay provides a visual and faster alternative to the US CDC SARS-CoV-2 real-time RT-PCR assay, with 95% positive predictive agreement and 100% negative predictive agreement.. SARS-CoV-2 in patient samples is detected in under an hour using a CRISPR-based lateral flow assay.
              • Record: found
              • Abstract: found
              • Article: not found

              Global threats to human water security and river biodiversity.

              Protecting the world's freshwater resources requires diagnosing threats over a broad range of scales, from global to local. Here we present the first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts. We find that nearly 80% of the world's population is exposed to high levels of threat to water security. Massive investment in water technology enables rich nations to offset high stressor levels without remedying their underlying causes, whereas less wealthy nations remain vulnerable. A similar lack of precautionary investment jeopardizes biodiversity, with habitats associated with 65% of continental discharge classified as moderately to highly threatened. The cumulative threat framework offers a tool for prioritizing policy and management responses to this crisis, and underscores the necessity of limiting threats at their source instead of through costly remediation of symptoms in order to assure global water security for both humans and freshwater biodiversity.

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ACS Synthetic Biology
                ACS Synth. Biol.
                American Chemical Society (ACS)
                2161-5063
                2161-5063
                July 25 2023
                Affiliations
                [1 ]Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
                [2 ]Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
                [3 ]Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
                Article
                10.1021/acssynbio.3c00111
                37490644
                754976ba-14b3-4c81-ad45-e6dfbb93ebc4
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article

                Related Documents Log