8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanomaterials without chemical linkers or physical interactions that reside on a two-dimensional surface are attractive because of their electronic, optical and catalytic properties. An in situ method has been developed to fabricate gold nanoparticle (Au NP) films on different substrates, regardless of whether they are hydrophilic or hydrophobic surfaces, including glass, 96-well polystyrene plates, and polydimethylsiloxane (PDMS). A mixture of sodium formate (HCOONa) and chloroauric acid (HAuCl 4) solution was used to prepare Au NP films at room temperature. An experimental study of the mechanism revealed that film formation is dependent on surface wettability and inter particle attraction. The as-fabricated Au NP films were further applied to the colorimetric detection of influenza virus. The response to the commercial target, New Caledonia/H1N1/1999 influenza virus, was linear in the range from 10 pg/ml to 10 μg/ml and limit of detection was 50.5 pg/ml. In the presence of clinically isolated influenza A virus (H3N2), the optical density of developed color was dependent on the virus concentration (10–50,000 PFU/ml). The limit of detection of this study was 24.3 PFU/ml, a limit 116 times lower than that of conventional ELISA (2824.3 PFU/ml). The sensitivity was also 500 times greater than that of commercial immunochromatography kits.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Gold nanoparticles in chemical and biological sensing.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ge/Si nanowire heterostructures as high-performance field-effect transistors.

            Semiconducting carbon nanotubes and nanowires are potential alternatives to planar metal-oxide-semiconductor field-effect transistors (MOSFETs) owing, for example, to their unique electronic structure and reduced carrier scattering caused by one-dimensional quantum confinement effects. Studies have demonstrated long carrier mean free paths at room temperature in both carbon nanotubes and Ge/Si core/shell nanowires. In the case of carbon nanotube FETs, devices have been fabricated that work close to the ballistic limit. Applications of high-performance carbon nanotube FETs have been hindered, however, by difficulties in producing uniform semiconducting nanotubes, a factor not limiting nanowires, which have been prepared with reproducible electronic properties in high yield as required for large-scale integrated systems. Yet whether nanowire field-effect transistors (NWFETs) can indeed outperform their planar counterparts is still unclear. Here we report studies on Ge/Si core/shell nanowire heterostructures configured as FETs using high-kappa dielectrics in a top-gate geometry. The clean one-dimensional hole-gas in the Ge/Si nanowire heterostructures and enhanced gate coupling with high-kappa dielectrics give high-performance FETs values of the scaled transconductance (3.3 mS microm(-1)) and on-current (2.1 mA microm(-1)) that are three to four times greater than state-of-the-art MOSFETs and are the highest obtained on NWFETs. Furthermore, comparison of the intrinsic switching delay, tau = CV/I, which represents a key metric for device applications, shows that the performance of Ge/Si NWFETs is comparable to similar length carbon nanotube FETs and substantially exceeds the length-dependent scaling of planar silicon MOSFETs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An information theory model of hydrophobic interactions.

              A molecular model of poorly understood hydrophobic effects is heuristically developed using the methods of information theory. Because primitive hydrophobic effects can be tied to the probability of observing a molecular-sized cavity in the solvent, the probability distribution of the number of solvent centers in a cavity volume is modeled on the basis of the two moments available from the density and radial distribution of oxygen atoms in liquid water. The modeled distribution then yields the probability that no solvent centers are found in the cavity volume. This model is shown to account quantitatively for the central hydrophobic phenomena of cavity formation and association of inert gas solutes. The connection of information theory to statistical thermodynamics provides a basis for clarification of hydrophobic effects. The simplicity and flexibility of the approach suggest that it should permit applications to conformational equilibria of nonpolar solutes and hydrophobic residues in biopolymers.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                14 March 2017
                2017
                : 7
                : 44495
                Affiliations
                [1 ]Research Institute of Green Science and Technology, Shizuoka University , 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
                [2 ]Department of Cogno-Mechatronics Engineering, Pusan National University , Busan 609-735, Korea
                [3 ]Department of Infectious Diseases, Hamamatsu University School of Medicine , 1-20-1 Higashi-ku, Handa-yama, Hamamatsu 431-3192, Japan
                [4 ]School of Engineering, University of Guelph, Guelph , ON N1G 2W1, Ontario, Canada
                [5 ]Graduate School of Science and Technology, Shizuoka University , 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep44495
                10.1038/srep44495
                5349514
                28290527
                754d45d6-6035-4c34-aa5d-cafd2ed2c251
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 28 September 2016
                : 08 February 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article