103
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Nanoscale Optical Biosensor:  Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles

      ,
      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triangular silver nanoparticles ( approximately 100 nm wide and 50 nm high) have remarkable optical properties. In particular, the peak extinction wavelength, lambda(max) of their localized surface plasmon resonance (LSPR) spectrum is unexpectedly sensitive to nanoparticle size, shape, and local ( approximately 10-30 nm) external dielectric environment. This sensitivity of the LSPR lambda(max) to the nanoenvironment has allowed us to develop a new class of nanoscale affinity biosensors. The essential characteristics and operational principles of these LSPR nanobiosensors will be illustrated using the well-studied biotin-streptavidin system. Exposure of biotin-functionalized Ag nanotriangles to 100 nM streptavidin (SA) caused a 27.0 nm red-shift in the LSPR lambda(max). The LSPR lambda(max) shift, DeltaR/DeltaR(max), versus [SA] response curve was measured over the concentration range 10(-)(15) M < [SA] < 10(-)(6) M. Comparison of the data with the theoretical normalized response expected for 1:1 binding of a ligand to a multivalent receptor with different sites but invariant affinities yielded approximate values for the saturation response, DeltaR(max) = 26.5 nm, and the surface-confined thermodynamic binding constant K(a,surf) = 10(11) M(-)(1). At present, the limit of detection (LOD) for the LSPR nanobiosensor is found to be in the low-picomolar to high-femtomolar region. A strategy to amplify the response of the LSPR nanobiosensor using biotinylated Au colloids and thereby further improve the LOD is demonstrated. Several control experiments were performed to define the LSPR nanobiosensor's response to nonspecific binding as well as to demonstrate its response to the specific binding of another protein. These include the following: (1) electrostatic binding of SA to a nonbiotinylated surface, (2) nonspecific interactions of prebiotinylated SA to a biotinylated surface, (3) nonspecific interactions of bovine serum albumin to a biotinylated surface, and (4) specific binding of anti-biotin to a biotinylated surface. The LSPR nanobiosensor provides a pathway to ultrasensitive biodetection experiments with extremely simple, small, light, robust, low-cost instrumentation that will greatly facilitate field-portable environmental or point-of-service medical diagnostic applications.

          Related collections

          Author and article information

          Journal
          Journal of the American Chemical Society
          J. Am. Chem. Soc.
          American Chemical Society (ACS)
          0002-7863
          1520-5126
          September 2002
          September 2002
          : 124
          : 35
          : 10596-10604
          Article
          10.1021/ja020393x
          12197762
          754f8579-85ae-4815-b622-03bad0813346
          © 2002
          History

          Comments

          Comment on this article