0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      β2-Microglobulin exacerbates neuroinflammation, brain damage, and cognitive impairment after stroke in rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          β2-Microglobulin (β2M), a component of the major histocompatibility complex class I molecule, is associated with aging-related cognitive impairment and Alzheimer’s disease. Although upregulation of β2M is considered to be highly related to ischemic stroke, the specific role and underlying mechanistic action of β2M are poorly understood. In this study, we established a rat model of focal cerebral ischemia by occlusion of the middle cerebral artery. We found that β2M levels in the cerebral spinal fluid, serum, and brain tissue were significantly increased in the acute period but gradually decreased during the recovery period. RNA interference was used to inhibit β2M expression in the acute period of cerebral stroke. Tissue staining with 2,3,5-triphenyltetrazolium chloride and evaluation of cognitive function using the Morris water maze test demonstrated that decreased β2M expression in the ischemic penumbra reduced infarct volume and alleviated cognitive deficits, respectively. Notably, glial cell, caspase-1 (p20), and Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation as well as production of the inflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor-α were also effectively inhibited by β2M silencing. These findings suggest that β2M participates in brain injury and cognitive impairment in a rat model of ischemic stroke through activation of neuroinflammation associated with the NLRP3 inflammasome.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis

          For the past twenty five years the NIH family of imaging software, NIH Image and ImageJ have been pioneers as open tools for scientific image analysis. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Animal models of necrotizing enterocolitis: review of the literature and state of the art

            Abstract Necrotizing enterocolitis (NEC) remains the leading cause of gastrointestinal surgical emergency in preterm neonates. Over the last five decades, a variety of experimental models have been developed to study the pathophysiology of this disease and to test the effectiveness of novel therapeutic strategies. Experimental NEC is mainly modeled in neonatal rats, mice and piglets. In this review, we focus on these experimental models and discuss the major advantages and disadvantages of each. We also briefly discuss other models that are not as widely used but have contributed to our current knowledge of NEC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research

              Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the “ARRIVE Essential 10,” which constitutes the minimum requirement, and the “Recommended Set,” which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration (E&E) document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regen Res
                Neural Regeneration Research
                Wolters Kluwer - Medknow (India )
                1673-5374
                1876-7958
                March 2023
                02 August 2022
                : 18
                : 3
                : 603-608
                Affiliations
                [1 ]Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu Province, China
                [2 ]Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
                [3 ]Department of Neurology, Xuzhou No. 1 People’s Hospital, the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
                Author notes
                [* ] Correspondence to: Rui-Qin Yao, wenxi_yao@ 123456163.com .

                Author contributions: Study design: RQY; experiment implementation: YYL, FFH, RQY; data analysis: FC, JL, FQL, SSW, YYZ, YYL, FFH; data visualization: FQL, SSW, YYZ; manuscript draft: FC, JL, RQY. All authors approved the final version of this paper .

                Author information
                https://orcid.org/0000-0001-7617-5438
                Article
                NRR-18-603
                10.4103/1673-5374.350204
                9727456
                36018184
                7558b606-88fa-47ea-a285-e78e790c7e0b
                Copyright: © Neural Regeneration Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 21 November 2021
                : 28 January 2022
                : 17 May 2022
                Categories
                Research Article

                cognitive impairment,cognitive improvement,glial activation,infarct volume,ischemia,middle cerebral artery occlusion,neuroinflammation,nlrp3 inflammasome,stroke,β2 microglobulin

                Comments

                Comment on this article