Blog
About

45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adherence to Therapies in Patients with Type 2 Diabetes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adherence to therapy is defined as the extent to which a person’s behavior in taking medication, following a diet, and/or executing lifestyle changes, corresponds with agreed recommendations from a healthcare provider. Patients presenting with type 2 diabetes mellitus are initially encouraged to maintain a healthy diet and exercise regimen, followed by early medication that generally includes one or more oral hypoglycemic agents and later may include an injectable treatment. To prevent the complications associated with type 2 diabetes, therapy frequently also includes medications for control of blood pressure, dyslipidemia and other disorders, since patients often have more than three or four chronic conditions. Despite the benefits of therapy, studies have indicated that recommended glycemic goals are achieved by less than 50% of patients, which may be associated with decreased adherence to therapies. As a result, hyperglycemia and long-term complications increase morbidity and premature mortality, and lead to increased costs to health services. Reasons for nonadherence are multifactorial and difficult to identify. They include age, information, perception and duration of disease, complexity of dosing regimen, polytherapy, psychological factors, safety, tolerability and cost. Various measures to increase patient satisfaction and increase adherence in type 2 diabetes have been investigated. These include reducing the complexity of therapy by fixed-dose combination pills and less frequent dosing regimens, using medications that are associated with fewer adverse events (hypoglycemia or weight gain), educational initiatives with improved patient–healthcare provider communication, reminder systems and social support to help reduce costs. In the current narrative review, factors that influence adherence to different therapies for type 2 diabetes are discussed, along with outcomes of poor adherence, the economic impact of nonadherence, and strategies aimed at improving adherence.

          Related collections

          Most cited references 105

          • Record: found
          • Abstract: found
          • Article: found

          Standards of Medical Care in Diabetes—2013

          Diabetes mellitus is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires multifactorial risk reduction strategies beyond glycemic control. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. Although individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. Specifically titled sections of the standards address children with diabetes, pregnant women, and people with prediabetes. These standards are not intended to preclude clinical judgment or more extensive evaluation and management of the patient by other specialists as needed. For more detailed information about management of diabetes, refer to references (1–3). The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A large number of these interventions have been shown to be cost-effective (4). A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E. Table 1 ADA evidence grading system for clinical practice recommendations Level of evidence Description A Clear evidence from well-conducted, generalizable RCTs that are adequately powered, including: • Evidence from a well-conducted multicenter trial• Evidence from a meta-analysis that incorporated quality ratings in the analysisCompelling nonexperimental evidence, i.e., “all or none” rule developed by the Centre for Evidence-Based Medicine at the University of OxfordSupportive evidence from well-conducted RCTs that are adequately powered, including:• Evidence from a well-conducted trial at one or more institutions• Evidence from a meta-analysis that incorporated quality ratings in the analysis B Supportive evidence from well-conducted cohort studies• Evidence from a well-conducted prospective cohort study or registry• Evidence from a well-conducted meta-analysis of cohort studiesSupportive evidence from a well-conducted case-control study C Supportive evidence from poorly controlled or uncontrolled studies• Evidence from randomized clinical trials with one or more major or three or more minor methodological flaws that could invalidate the results• Evidence from observational studies with high potential for bias (such as case series with comparison with historical controls)• Evidence from case series or case reportsConflicting evidence with the weight of evidence supporting the recommendation E Expert consensus or clinical experience These standards of care are revised annually by the ADA’s multidisciplinary Professional Practice Committee, incorporating new evidence. For the current revision, committee members systematically searched Medline for human studies related to each subsection and published since 1 January 2011. Recommendations (bulleted at the beginning of each subsection and also listed in the “Executive Summary: Standards of Medical Care in Diabetes—2013”) were revised based on new evidence or, in some cases, to clarify the prior recommendation or match the strength of the wording to the strength of the evidence. A table linking the changes in recommendations to new evidence can be reviewed at http://professional.diabetes.org/CPR. As is the case for all position statements, these standards of care were reviewed and approved by the Executive Committee of ADA’s Board of Directors, which includes health care professionals, scientists, and lay people. Feedback from the larger clinical community was valuable for the 2013 revision of the standards. Readers who wish to comment on the “Standards of Medical Care in Diabetes—2013” are invited to do so at http://professional.diabetes.org/CPR. Members of the Professional Practice Committee disclose all potential financial conflicts of interest with industry. These disclosures were discussed at the onset of the standards revision meeting. Members of the committee, their employer, and their disclosed conflicts of interest are listed in the “Professional Practice Committee for the 2013 Clinical Practice Recommendations” table (see p. S109). The ADA funds development of the standards and all its position statements out of its general revenues and does not use industry support for these purposes. I. CLASSIFICATION AND DIAGNOSIS A. Classification The classification of diabetes includes four clinical classes: Type 1 diabetes (results from β-cell destruction, usually leading to absolute insulin deficiency) Type 2 diabetes (results from a progressive insulin secretory defect on the background of insulin resistance) Other specific types of diabetes due to other causes, e.g., genetic defects in β-cell function, genetic defects in insulin action, diseases of the exocrine pancreas (such as cystic fibrosis), and drug- or chemical-induced (such as in the treatment of HIV/AIDS or after organ transplantation) Gestational diabetes mellitus (GDM) (diabetes diagnosed during pregnancy that is not clearly overt diabetes) Some patients cannot be clearly classified as type 1 or type 2 diabetic. Clinical presentation and disease progression vary considerably in both types of diabetes. Occasionally, patients who otherwise have type 2 diabetes may present with ketoacidosis. Similarly, patients with type 1 diabetes may have a late onset and slow (but relentless) progression of disease despite having features of autoimmune disease. Such difficulties in diagnosis may occur in children, adolescents, and adults. The true diagnosis may become more obvious over time. B. Diagnosis of diabetes For decades, the diagnosis of diabetes was based on plasma glucose criteria, either the fasting plasma glucose (FPG) or the 2-h value in the 75-g oral glucose tolerance test (OGTT) (5). In 2009, an International Expert Committee that included representatives of the ADA, the International Diabetes Federation (IDF), and the European Association for the Study of Diabetes (EASD) recommended the use of the A1C test to diagnose diabetes, with a threshold of ≥6.5% (6), and the ADA adopted this criterion in 2010 (5). The diagnostic test should be performed using a method that is certified by the NGSP and standardized or traceable to the Diabetes Control and Complications Trial (DCCT) reference assay. Although point-of-care (POC) A1C assays may be NGSP certified, proficiency testing is not mandated for performing the test, so use of these assays for diagnostic purposes could be problematic. Epidemiological datasets show a similar relationship for A1C to the risk of retinopathy as has been shown for the corresponding FPG and 2-h PG thresholds. The A1C has several advantages to the FPG and OGTT, including greater convenience (since fasting is not required), evidence to suggest greater preanalytical stability, and less day-to-day perturbations during periods of stress and illness. These advantages must be balanced by greater cost, the limited availability of A1C testing in certain regions of the developing world, and the incomplete correlation between A1C and average glucose in certain individuals. In addition, HbA1c levels may vary with patients’ race/ethnicity (7,8). Some have posited that glycation rates differ by race (with, for example, African Americans having higher rates of glycation), but this is controversial. A recent epidemiological study found that, when matched for FPG, African Americans (with and without diabetes) indeed had higher A1C than whites, but also had higher levels of fructosamine and glycated albumin and lower levels of 1,5 anhydroglucitol, suggesting that their glycemic burden (particularly postprandially) may be higher (9). Epidemiological studies forming the framework for recommending use of the A1C to diagnose diabetes have all been in adult populations. Whether the cut point would be the same to diagnose children or adolescents with type 2 diabetes is an area of uncertainty (3,10). A1C inaccurately reflects glycemia with certain anemias and hemoglobinopathies. For patients with an abnormal hemoglobin but normal red cell turnover, such as sickle cell trait, an A1C assay without interference from abnormal hemoglobins should be used (an updated list is available at www.ngsp.org/interf.asp). For conditions with abnormal red cell turnover, such as pregnancy, recent blood loss or transfusion, or some anemias, the diagnosis of diabetes must employ glucose criteria exclusively. The established glucose criteria for the diagnosis of diabetes (FPG and 2-h PG) remain valid as well (Table 2). Just as there is less than 100% concordance between the FPG and 2-h PG tests, there is no perfect concordance between A1C and either glucose-based test. Analyses of the National Health and Nutrition Examination Survey (NHANES) data indicate that, assuming universal screening of the undiagnosed, the A1C cut point of ≥6.5% identifies one-third fewer cases of undiagnosed diabetes than a fasting glucose cut point of ≥126 mg/dL (7.0 mmol/L) (11), and numerous studies have confirmed that at these cut points the 2-h OGTT value diagnoses more screened people with diabetes (12). However, in practice, a large portion of the diabetic population remains unaware of its condition. Thus, the lower sensitivity of A1C at the designated cut point may well be offset by the test’s greater practicality, and wider application of a more convenient test (A1C) may actually increase the number of diagnoses made. Table 2 Criteria for the diagnosis of diabetes As with most diagnostic tests, a test result diagnostic of diabetes should be repeated to rule out laboratory error, unless the diagnosis is clear on clinical grounds, such as a patient with a hyperglycemic crisis or classic symptoms of hyperglycemia and a random plasma glucose ≥200 mg/dL. It is preferable that the same test be repeated for confirmation, since there will be a greater likelihood of concurrence in this case. For example, if the A1C is 7.0% and a repeat result is 6.8%, the diagnosis of diabetes is confirmed. However, if two different tests (such as A1C and FPG) are both above the diagnostic thresholds, the diagnosis of diabetes is also confirmed. On the other hand, if two different tests are available in an individual and the results are discordant, the test whose result is above the diagnostic cut point should be repeated, and the diagnosis is made based on the confirmed test. That is, if a patient meets the diabetes criterion of the A1C (two results ≥6.5%) but not the FPG ( 9 lb or were diagnosed with GDM• hypertension (≥140/90 mmHg or on therapy for hypertension)• HDL cholesterol level 250 mg/dL (2.82 mmol/L)• women with polycystic ovary syndrome• A1C ≥5.7%, IGT, or IFG on previous testing• other clinical conditions associated with insulin resistance (e.g., severe obesity, acanthosis nigricans)• history of CVD 2. In the absence of the above criteria, testing for diabetes should begin at age 45 years. 3. If results are normal, testing should be repeated at least at 3-year intervals, with consideration of more frequent testing depending on initial results (e.g., those with prediabetes should be tested yearly) and risk status. * At-risk BMI may be lower in some ethnic groups. For many illnesses, there is a major distinction between screening and diagnostic testing. However, for diabetes, the same tests would be used for “screening” as for diagnosis. Diabetes may be identified anywhere along a spectrum of clinical scenarios ranging from a seemingly low-risk individual who happens to have glucose testing, to a higher-risk individual whom the provider tests because of high suspicion of diabetes, to the symptomatic patient. The discussion herein is primarily framed as testing for diabetes in those without symptoms. The same assays used for testing for diabetes will also detect individuals with prediabetes. A. Testing for type 2 diabetes and risk of future diabetes in adults Prediabetes and diabetes meet established criteria for conditions in which early detection is appropriate. Both conditions are common, increasing in prevalence, and impose significant public health burdens. There is a long presymptomatic phase before the diagnosis of type 2 diabetes is usually made. Relatively simple tests are available to detect preclinical disease. Additionally, the duration of glycemic burden is a strong predictor of adverse outcomes, and effective interventions exist to prevent progression of prediabetes to diabetes (see Section IV) and to reduce risk of complications of diabetes (see Section VI). Type 2 diabetes is frequently not diagnosed until complications appear, and approximately one-fourth of all people with diabetes in the U.S. may be undiagnosed. The effectiveness of early identification of prediabetes and diabetes through mass testing of asymptomatic individuals has not been proven definitively, and rigorous trials to provide such proof are unlikely to occur. In a large randomized controlled trial (RCT) in Europe, general practice patients between the ages of 40–69 years were screened for diabetes and then randomly assigned by practice to routine care of diabetes or intensive treatment of multiple risk factors. After 5.3 years of follow-up, CVD risk factors were modestly but significantly more improved with intensive treatment. Incidence of first CVD event and mortality rates were not significantly different between groups (18). This study would seem to add support for early treatment of screen-detected diabetes, as risk factor control was excellent even in the routine treatment arm and both groups had lower event rates than predicted. The absence of a control unscreened arm limits the ability to definitely prove that screening impacts outcomes. Mathematical modeling studies suggest that screening independent of risk factors beginning at age 30 years or age 45 years is highly cost-effective ( 85th percentile for age and sex, weight for height >85th percentile, or weight >120% of ideal for height) Plus any two of the following risk factors: • Family history of type 2 diabetes in first- or second-degree relative • Race/ethnicity (Native American, African American, Latino, Asian American, Pacific Islander) • Signs of insulin resistance or conditions associated with insulin resistance (acanthosis nigricans, hypertension, dyslipidemia, polycystic ovary syndrome, or small-for-gestational-age birth weight) • Maternal history of diabetes or GDM during the child’s gestation Age of initiation: age 10 years or at onset of puberty, if puberty occurs at a younger age Frequency: every 3 years * Persons aged 18 years and younger. The incidence of type 2 diabetes in adolescents has increased dramatically in the last decade, especially in minority populations (31), although the disease remains rare in the general pediatric population (32). Consistent with recommendations for adults, children and youth at increased risk for the presence or the development of type 2 diabetes should be tested within the health care setting (33). The recommendations of the ADA consensus statement “Type 2 Diabetes in Children and Adolescents,” with some modifications, are summarized in Table 5. C. Screening for type 1 diabetes Recommendations Consider referring relatives of those with type 1 diabetes for antibody testing for risk assessment in the setting of a clinical research study. (E) Generally, people with type 1 diabetes present with acute symptoms of diabetes and markedly elevated blood glucose levels, and some cases are diagnosed with life-threatening ketoacidosis. Evidence from several studies suggests that measurement of islet autoantibodies in relatives of those with type 1 diabetes identifies individuals who are at risk for developing type 1 diabetes. Such testing, coupled with education about symptoms of diabetes and follow-up in an observational clinical study, may allow earlier identification of onset of type 1 diabetes and lessen presentation with ketoacidosis at time of diagnosis. This testing may be appropriate in those who have relatives with type 1 diabetes, in the context of clinical research studies (see, for example, http://www.diabetestrialnet.org). However, widespread clinical testing of asymptomatic low-risk individuals cannot currently be recommended, as it would identify very few individuals in the general population who are at risk. Individuals who screen positive should be counseled about their risk of developing diabetes and symptoms of diabetes, followed closely to prevent development of diabetic ketoacidosis, and informed about clinical trials. Clinical studies are being conducted to test various methods of preventing type 1 diabetes in those with evidence of autoimmunity. Some interventions have demonstrated modest efficacy in slowing β-cell loss early in type 1 diabetes (34,35), and further research is needed to determine whether they may be effective in preventing type 1 diabetes. III. DETECTION AND DIAGNOSIS OF GDM Recommendations Screen for undiagnosed type 2 diabetes at the first prenatal visit in those with risk factors, using standard diagnostic criteria. (B) In pregnant women not previously known to have diabetes, screen for GDM at 24–28 weeks of gestation, using a 75-g 2-h OGTT and the diagnostic cut points in Table 6. (B) Screen women with GDM for persistent diabetes at 6–12 weeks postpartum, using the OGTT and nonpregnancy diagnostic criteria. (E) Women with a history of GDM should have lifelong screening for the development of diabetes or prediabetes at least every 3 years. (B) Women with a history of GDM found to have prediabetes should receive lifestyle interventions or metformin to prevent diabetes. (A) Table 6 Screening for and diagnosis of GDM Perform a 75-g OGTT, with plasma glucose measurement fasting and at 1 and 2 h, at 24–28 weeks of gestation in women not previously diagnosed with overt diabetes. The OGTT should be performed in the morning after an overnight fast of at least 8 h. The diagnosis of GDM is made when any of the following plasma glucose values are exceeded:• Fasting: ≥92 mg/dL (5.1 mmol/L)• 1 h: ≥180 mg/dL (10.0 mmol/L)• 2 h: ≥153 mg/dL (8.5 mmol/L) For many years, GDM was defined as any degree of glucose intolerance with onset or first recognition during pregnancy (13), whether or not the condition persisted after pregnancy, and not excluding the possibility that unrecognized glucose intolerance may have antedated or begun concomitantly with the pregnancy. This definition facilitated a uniform strategy for detection and classification of GDM, but its limitations were recognized for many years. As the ongoing epidemic of obesity and diabetes has led to more type 2 diabetes in women of childbearing age, the number of pregnant women with undiagnosed type 2 diabetes has increased (36). Because of this, it is reasonable to screen women with risk factors for type 2 diabetes (Table 4) for diabetes at their initial prenatal visit, using standard diagnostic criteria (Table 2). Women with diabetes found at this visit should receive a diagnosis of overt, not gestational, diabetes. GDM carries risks for the mother and neonate. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study (37), a large-scale (∼25,000 pregnant women) multinational epidemiological study, demonstrated that risk of adverse maternal, fetal, and neonatal outcomes continuously increased as a function of maternal glycemia at 24–28 weeks, even within ranges previously considered normal for pregnancy. For most complications, there was no threshold for risk. These results have led to careful reconsideration of the diagnostic criteria for GDM. After deliberations in 2008–2009, the International Association of Diabetes and Pregnancy Study Groups (IADPSG), an international consensus group with representatives from multiple obstetrical and diabetes organizations, including ADA, developed revised recommendations for diagnosing GDM. The group recommended that all women not known to have prior diabetes undergo a 75-g OGTT at 24–28 weeks of gestation. Additionally, the group developed diagnostic cut points for the fasting, 1-h, and 2-h plasma glucose measurements that conveyed an odds ratio for adverse outcomes of at least 1.75 compared with women with the mean glucose levels in the HAPO study. Current screening and diagnostic strategies, based on the IADPSG statement (38), are outlined in Table 6. These new criteria will significantly increase the prevalence of GDM, primarily because only one abnormal value, not two, is sufficient to make the diagnosis. The ADA recognizes the anticipated significant increase in the incidence of GDM diagnosed by these criteria and is sensitive to concerns about the “medicalization” of pregnancies previously categorized as normal. These diagnostic criteria changes are being made in the context of worrisome worldwide increases in obesity and diabetes rates, with the intent of optimizing gestational outcomes for women and their babies. Admittedly, there are few data from randomized clinical trials regarding therapeutic interventions in women who will now be diagnosed with GDM based on only one blood glucose value above the specified cut points (in contrast to the older criteria that stipulated at least two abnormal values). However, there is emerging observational and retrospective evidence that women diagnosed with the new criteria (even if they would not have been diagnosed with older criteria) have increased rates of poor pregnancy outcomes similar to those of women with GDM by prior criteria (39,40). Expected benefits to these pregnancies and offspring are inferred from intervention trials that focused on women with more mild hyperglycemia than identified using older GDM diagnostic criteria and that found modest benefits (41,42). The frequency of follow-up and blood glucose monitoring for these women is not yet clear, but likely to be less intensive than for women diagnosed by the older criteria. It is important to note that 80–90% of women in both of the mild GDM studies (whose glucose values overlapped with the thresholds recommended herein) could be managed with lifestyle therapy alone. The American College of Obstetricians and Gynecologists announced in 2011 that they continue to recommend use of prior diagnostic criteria for GDM (43). Several other countries have adopted the new criteria, and a report from the WHO on this topic is pending at the time of publication of these standards. The National Institutes of Health is planning to hold a consensus development conference on this topic in 2013. Because some cases of GDM may represent pre-existing undiagnosed type 2 diabetes, women with a history of GDM should be screened for diabetes 6–12 weeks postpartum, using nonpregnant OGTT criteria. Because of their prepartum treatment for hyperglycemia, use of the A1C for diagnosis of persistent diabetes at the postpartum visit is not recommended (44). Women with a history of GDM have a greatly increased subsequent risk for diabetes (45) and should be followed up with subsequent screening for the development of diabetes or prediabetes, as outlined in Section II. Lifestyle interventions or metformin should be offered to women with a history of GDM who develop prediabetes, as discussed in Section IV. In the prospective Nurses’ Health Study II, risk of subsequent diabetes after a history of GDM was significantly lower in women who followed healthy eating patterns. Adjusting for BMI moderately, but not completely, attenuated this association (46). IV. PREVENTION/DELAY OF TYPE 2 DIABETES Recommendations Patients with IGT (A), IFG (E), or an A1C of 5.7–6.4% (E) should be referred to an effective ongoing support program targeting weight loss of 7% of body weight and increasing physical activity to at least 150 min/week of moderate activity such as walking. Follow-up counseling appears to be important for success. (B) Based on the cost-effectiveness of diabetes prevention, such programs should be covered by third-party payers. (B) Metformin therapy for prevention of type 2 diabetes may be considered in those with IGT (A), IFG (E), or an A1C of 5.7–6.4% (E), especially for those with BMI >35 kg/m2, aged 64 years of age previously immunized when they were 5 years ago. Other indications for repeat vaccination include nephrotic syndrome, chronic renal disease, and other immunocompromised states, such as after transplantation. (C) Administer hepatitis B vaccination to unvaccinated adults with diabetes who are aged 19 through 59 years. (C) Consider administering hepatitis B vaccination to unvaccinated adults with diabetes who are aged ≥60 years. (C) Influenza and pneumonia are common, preventable infectious diseases associated with high mortality and morbidity in the elderly and in people with chronic diseases. Though there are limited studies reporting the morbidity and mortality of influenza and pneumococcal pneumonia specifically in people with diabetes, observational studies of patients with a variety of chronic illnesses, including diabetes, show that these conditions are associated with an increase in hospitalizations for influenza and its complications. People with diabetes may be at increased risk of the bacteremic form of pneumococcal infection and have been reported to have a high risk of nosocomial bacteremia, which has a mortality rate as high as 50% (243). Safe and effective vaccines are available that can greatly reduce the risk of serious complications from these diseases (244,245). In a case-control series, influenza vaccine was shown to reduce diabetes-related hospital admission by as much as 79% during flu epidemics (244). There is sufficient evidence to support that people with diabetes have appropriate serological and clinical responses to these vaccinations. The Centers for Disease Control and Prevention (CDC) Advisory Committee on Immunization Practices recommends influenza and pneumococcal vaccines for all individuals with diabetes (http://www.cdc.gov/vaccines/recs/). Late in 2012, the Advisory Committee on Immunization Practices of the CDC recommended that all previously unvaccinated adults with diabetes aged 19 through 59 years be vaccinated against hepatitis B virus (HBV) as soon as possible after a diagnosis of diabetes is made and that vaccination be considered for those aged ≥60 years, after assessing risk and likelihood of an adequate immune response (246). At least 29 outbreaks of HBV in long-term care facilities and hospitals have been reported to the CDC, with the majority involving adults with diabetes receiving “assisted blood glucose monitoring,” in which such monitoring is done by a health care professional with responsibility for more than one patient. HBV is highly transmissible and stable for long periods of time on surfaces such as lancing devices and blood glucose meters, even when no blood is visible. Blood sufficient to transmit the virus has also been found in the reservoirs of insulin pens, resulting in warnings against sharing such devices between patients. The CDC analyses suggest that, excluding persons with HBV-related risk behaviors, acute HBV infection is about twice as high among adults with diabetes aged ≥23 years compared with adults without diabetes. Seroprevalence of antibody to HBV core antigen, suggesting past or current infection, is 60% higher among adults with diabetes than those without, and there is some evidence that diabetes imparts a higher HBV case fatality rate. The age differentiation in the recommendations stems from CDC economic models suggesting that vaccination of adults with diabetes who were aged 20–59 years would cost an estimated $75,000 per quality-adjusted life-year saved, while cost per quality-adjusted life-year saved increased significantly at higher ages. In addition to competing causes of mortality in older adults, the immune response to the vaccine declines with age (246). These new recommendations regarding HBV vaccinations serve as a reminder to clinicians that children and adults with diabetes need a number of vaccinations, both those specifically indicated because of diabetes as well as those recommended for the general population (http://www.cdc.gov/vaccines/recs/). VI. PREVENTION AND MANAGEMENT OF DIABETES COMPLICATIONS A. CVD CVD is the major cause of morbidity and mortality for individuals with diabetes and the largest contributor to the direct and indirect costs of diabetes. The common conditions coexisting with type 2 diabetes (e.g., hypertension and dyslipidemia) are clear risk factors for CVD, and diabetes itself confers independent risk. Numerous studies have shown the efficacy of controlling individual cardiovascular risk factors in preventing or slowing CVD in people with diabetes. Large benefits are seen when multiple risk factors are addressed globally (247,248). There is evidence that measures of 10-year coronary heart disease (CHD) risk among U.S. adults with diabetes have improved significantly over the past decade (249). 1. Hypertension/blood pressure control Recommendations Screening and diagnosis Blood pressure should be measured at every routine visit. Patients found to have elevated blood pressure should have blood pressure confirmed on a separate day. (B) Goals People with diabetes and hypertension should be treated to a systolic blood pressure goal of 120/80 mmHg should be advised on lifestyle changes to reduce blood pressure. (B) Patients with confirmed blood pressure ≥140/80 mmHg should, in addition to lifestyle therapy, have prompt initiation and timely subsequent titration of pharmacological therapy to achieve blood pressure goals. (B) Lifestyle therapy for elevated blood pressure consists of weight loss, if overweight; Dietary Approaches to Stop Hypertension (DASH)-style dietary pattern including reducing sodium and increasing potassium intake; moderation of alcohol intake; and increased physical activity. (B) Pharmacological therapy for patients with diabetes and hypertension should be with a regimen that includes either an ACE inhibitor or an angiotensin receptor blocker (ARB). If one class is not tolerated, the other should be substituted. (C) Multiple-drug therapy (two or more agents at maximal doses) is generally required to achieve blood pressure targets. (B) Administer one or more antihypertensive medications at bedtime. (A) If ACE inhibitors, ARBs, or diuretics are used, serum creatinine/estimated glomerular filtration rate (eGFR) and serum potassium levels should be monitored. (E) In pregnant patients with diabetes and chronic hypertension, blood pressure target goals of 110–129/65–79 mmHg are suggested in the interest of long-term maternal health and minimizing impaired fetal growth. ACE inhibitors and ARBs are contraindicated during pregnancy. (E) Hypertension is a common comorbidity of diabetes, affecting the majority of patients, with prevalence depending on type of diabetes, age, obesity, and ethnicity. Hypertension is a major risk factor for both CVD and microvascular complications. In type 1 diabetes, hypertension is often the result of underlying nephropathy, while in type 2 diabetes it usually coexists with other cardiometabolic risk factors. Screening and diagnosis Measurement of blood pressure in the office should be done by a trained individual and follow the guidelines established for nondiabetic individuals: measurement in the seated position, with feet on the floor and arm supported at heart level, after 5 min of rest. Cuff size should be appropriate for the upper arm circumference. Elevated values should be confirmed on a separate day. Home blood pressure self-monitoring and 24-h ambulatory blood pressure monitoring may provide additional evidence of “white coat” and masked hypertension and other discrepancies between office and “true” blood pressure. Studies in nondiabetic populations found that home measurements may better correlate with CVD risk than office measurements (250,251). However, the preponderance of the evidence of benefits of treatment of hypertension in people with diabetes is based on office measurements. Treatment goals Epidemiological analyses show that blood pressure >115/75 mmHg is associated with increased cardiovascular event rates and mortality in individuals with diabetes (252–254) and that systolic blood pressure above 120 mmHg predicts long-term end-stage renal disease (ESRD). Randomized clinical trials have demonstrated the benefit (reduction of CHD events, stroke, and nephropathy) of lowering blood pressure to 120 mmHg or diastolic blood pressure >80 mmHg). If the blood pressure is confirmed to be ≥140 mmHg systolic and/or ≥80 mmHg diastolic, pharmacological therapy should be initiated along with nonpharmacological therapy (252). Lowering of blood pressure with regimens based on a variety of antihypertensive drugs, including ACE inhibitors, ARBs, β-blockers, diuretics, and calcium channel blockers, has been shown to be effective in reducing cardiovascular events. Several studies suggested that ACE inhibitors may be superior to dihydropyridine calcium channel blockers in reducing cardiovascular events (265–267). However, a variety of other studies have shown no specific advantage to ACE inhibitors as initial treatment of hypertension in the general hypertensive population, but rather an advantage on cardiovascular outcomes of initial therapy with low-dose thiazide diuretics (252,268,269). In people with diabetes, inhibitors of the renin-angiotensin system (RAS) may have unique advantages for initial or early therapy of hypertension. In a nonhypertension trial of high-risk individuals, including a large subset with diabetes, an ACE inhibitor reduced CVD outcomes (270). In patients with congestive heart failure (CHF), including diabetic subgroups, ARBs have been shown to reduce major CVD outcomes (271–274), and in type 2 diabetic patients with significant nephropathy, ARBs were superior to calcium channel blockers for reducing heart failure (275). Though evidence for distinct advantages of RAS inhibitors on CVD outcomes in diabetes remains conflicting (255,269), the high CVD risks associated with diabetes, and the high prevalence of undiagnosed CVD, may still favor recommendations for their use as first-line hypertension therapy in people with diabetes (252). Recently, the blood pressure arm of the ADVANCE trial demonstrated that routine administration of a fixed combination of the ACE inhibitor perindopril and the diuretic indapamide significantly reduced combined microvascular and macrovascular outcomes, as well as CVD and total mortality. The improved outcomes could also have been due to lower achieved blood pressure in the perindopril-indapamide arm (259). Another trial showed a decrease in morbidity and mortality in those receiving benazepril and amlodipine compared with benazepril and hydrochlorothiazide (HCTZ). The compelling benefits of RAS inhibitors in diabetic patients with albuminuria or renal insufficiency provide additional rationale for use of these agents (see Section VI.B). If needed to achieve blood pressure targets, amlodipine, HCTZ, or chlorthalidone can be added. If eGFR is 50 mg/dL, and triglycerides 40 mg/dL (1.0 mmol/L) in men and >50 mg/dL (1.3 mmol/L) in women are desirable (C). However, LDL cholesterol–targeted statin therapy remains the preferred strategy. (A) Combination therapy has been shown not to provide additional cardiovascular benefit above statin therapy alone and is not generally recommended. (A) Statin therapy is contraindicated in pregnancy. (B) Evidence for benefits of lipid-lowering therapy Patients with type 2 diabetes have an increased prevalence of lipid abnormalities, contributing to their high risk of CVD. Multiple clinical trials demonstrated significant effects of pharmacological (primarily statin) therapy on CVD outcomes in subjects with CHD and for primary CVD prevention (279,280). Subanalyses of diabetic subgroups of larger trials (281–285) and trials specifically in subjects with diabetes (286,287) showed significant primary and secondary prevention of CVD events +/− CHD deaths in diabetic populations. Meta-analyses including data from over 18,000 patients with diabetes from 14 randomized trials of statin therapy, followed for a mean of 4.3 years, demonstrate a 9% proportional reduction in all-cause mortality and 13% reduction in vascular mortality, for each mmol/L reduction in LDL cholesterol (288). As is the case in nondiabetic individuals, absolute reductions in “hard” CVD outcomes (CHD death and nonfatal MI) are greatest in people with high baseline CVD risk (known CVD and/or very high LDL cholesterol levels), but overall the benefits of statin therapy in people with diabetes at moderate or high risk for CVD are convincing. There is an increased risk of incident diabetes with statin use (289,290), which may be limited to those with risk factors for diabetes. These patients may benefit additionally from diabetes screening when on statin therapy. In an analysis of one of the initial studies suggesting that statins are linked to risk of diabetes, the cardiovascular event rate reduction with statins outweighed the risk of incident diabetes even for patients at highest risk for diabetes. The absolute risk increase was small (over 5 years of follow-up, 1.2% of participants on placebo developed diabetes and 1.5% on rosuvastatin) (291). The relative risk-benefit ratio favoring statins is further supported by meta-analysis of individual data of over 170,000 persons from 27 randomized trials. This demonstrated that individuals at low risk of vascular disease, including those undergoing primary prevention, received benefits from statins that included reductions in major vascular events and vascular death without increase in incidence of cancer or deaths from other causes (280). Low levels of HDL cholesterol, often associated with elevated triglyceride levels, are the most prevalent pattern of dyslipidemia in persons with type 2 diabetes. However, the evidence base for drugs that target these lipid fractions is significantly less robust than that for statin therapy (292). Nicotinic acid has been shown to reduce CVD outcomes (293), although the study was done in a nondiabetic cohort. Gemfibrozil has been shown to decrease rates of CVD events in subjects without diabetes (294,295) and in the diabetic subgroup of one of the larger trials (294). However, in a large trial specific to diabetic patients, fenofibrate failed to reduce overall cardiovascular outcomes (296). Combination therapy, with a statin and a fibrate or statin and niacin, may be efficacious for treatment for all three lipid fractions, but this combination is associated with an increased risk for abnormal transaminase levels, myositis, or rhabdomyolysis. The risk of rhabdomyolysis is higher with higher doses of statins and with renal insufficiency and seems to be lower when statins are combined with fenofibrate than gemfibrozil (297). In the ACCORD study, the combination of fenofibrate and simvastatin did not reduce the rate of fatal cardiovascular events, nonfatal MI, or nonfatal stroke, as compared with simvastatin alone, in patients with type 2 diabetes who were at high risk for CVD. Prespecified subgroup analyses suggested heterogeneity in treatment effects according to sex, with a benefit of combination therapy for men and possible harm for women, and a possible benefit for patients with both triglyceride level ≥204 mg/dL and HDL cholesterol level ≤34 mg/dL (298). The AIM-HIGH trial randomized over 3,000 patients (about one-third with diabetes) with established CVD, low levels of HDL cholesterol, and triglyceride levels of 150–400 mg/dL to statin therapy plus extended release niacin or matching placebo. The trial was halted early due to lack of efficacy on the primary CVD outcome and a possible increase in ischemic stroke in those on combination therapy (299). Hence, combination lipid-lowering therapy cannot be broadly recommended. Dyslipidemia treatment and target lipid levels For most patients with diabetes, the first priority of dyslipidemia therapy (unless severe hypertriglyceridemia with risk of pancreatitis is the immediate issue) is to lower LDL cholesterol to a target goal of 1,000 mg/dL) may warrant immediate pharmacological therapy (fibric acid derivative, niacin, or fish oil) to reduce the risk of acute pancreatitis. In the absence of severe hypertriglyceridemia, therapy targeting HDL cholesterol or triglycerides lacks the strong evidence base of statin therapy. If the HDL cholesterol is 10%). This includes most men aged >50 years or women aged >60 years who have at least one additional major risk factor (family history of CVD, hypertension, smoking, dyslipidemia, or albuminuria). (C) Aspirin should not be recommended for CVD prevention for adults with diabetes at low CVD risk (10-year CVD risk 87% sensitivity in detecting DPN. Loss of 10-g monofilament perception and reduced vibration perception predict foot ulcers (380). Importantly, in patients with neuropathy, particularly when severe, causes other than diabetes should always be considered, such as neurotoxic medications, heavy metal poisoning, alcohol abuse, vitamin B12 deficiency (especially in those taking metformin for prolonged periods (381), renal disease, chronic inflammatory demyelinating neuropathy, inherited neuropathies, and vasculitis (382). Diabetic autonomic neuropathy The symptoms and signs of autonomic dysfunction should be elicited carefully during the history and physical examination. Major clinical manifestations of diabetic autonomic neuropathy include resting tachycardia, exercise intolerance, orthostatic hypotension, constipation, gastroparesis, erectile dysfunction, sudomotor dysfunction, impaired neurovascular function, and, potentially, autonomic failure in response to hypoglycemia (383). CAN, a CVD risk factor (93), is the most studied and clinically important form of diabetic autonomic neuropathy. CAN may be indicated by resting tachycardia (>100 bpm), orthostasis (a fall in systolic blood pressure >20 mmHg upon standing without an appropriate heart rate response); it is also associated with increased cardiac event rates. Although some societies have developed guidelines for screening for CAN, the benefits of sophisticated testing beyond risk stratification are not clear (384). Gastrointestinal neuropathies (e.g., esophageal enteropathy, gastroparesis, constipation, diarrhea, fecal incontinence) are common, and any section of the gastrointestinal tract may be affected. Gastroparesis should be suspected in individuals with erratic glucose control or with upper gastrointestinal symptoms without other identified cause. Evaluation of solid-phase gastric emptying using double-isotope scintigraphy may be done if symptoms are suggestive, but test results often correlate poorly with symptoms. Constipation is the most common lower-gastrointestinal symptom but can alternate with episodes of diarrhea. Diabetic autonomic neuropathy is also associated with genitourinary tract disturbances. In men, diabetic autonomic neuropathy may cause erectile dysfunction and/or retrograde ejaculation. Evaluation of bladder dysfunction should be performed for individuals with diabetes who have recurrent urinary tract infections, pyelonephritis, incontinence, or a palpable bladder. Symptomatic treatments DPN The first step in management of patients with DPN should be to aim for stable and optimal glycemic control. Although controlled trial evidence is lacking, several observational studies suggest that neuropathic symptoms improve not only with optimization of control, but also with the avoidance of extreme blood glucose fluctuations. Patients with painful DPN may benefit from pharmacological treatment of their symptoms: many agents have confirmed or probable efficacy confirmed in systematic reviews of RCTs (379), with several U.S. Food and Drug Administration (FDA)-approved for the management of painful DPN. Treatment of autonomic neuropathy Gastroparesis symptoms may improve with dietary changes and prokinetic agents such as metoclopramide or erythromycin. Treatments for erectile dysfunction may include phosphodiesterase type 5 inhibitors, intracorporeal or intraurethral prostaglandins, vacuum devices, or penile prostheses. Interventions for other manifestations of autonomic neuropathy are described in the ADA statement on neuropathy (380). As with DPN treatments, these interventions do not change the underlying pathology and natural history of the disease process, but may have a positive impact on the quality of life of the patient. E. Foot care Recommendations For all patients with diabetes, perform an annual comprehensive foot examination to identify risk factors predictive of ulcers and amputations. The foot examination should include inspection, assessment of foot pulses, and testing for loss of protective sensation (LOPS) (10-g monofilament plus testing any one of the following: vibration using 128-Hz tuning fork, pinprick sensation, ankle reflexes, or vibration perception threshold). (B) Provide general foot self-care education to all patients with diabetes. (B) A multidisciplinary approach is recommended for individuals with foot ulcers and high-risk feet, especially those with a history of prior ulcer or amputation. (B) Refer patients who smoke, have LOPS and structural abnormalities, or have history of prior lower-extremity complications to foot care specialists for ongoing preventive care and lifelong surveillance. (C) Initial screening for peripheral arterial disease (PAD) should include a history for claudication and an assessment of the pedal pulses. Consider obtaining an ankle-brachial index (ABI), as many patients with PAD are asymptomatic. (C) Refer patients with significant claudication or a positive ABI for further vascular assessment and consider exercise, medications, and surgical options. (C) Amputation and foot ulceration, consequences of diabetic neuropathy and/or PAD, are common and major causes of morbidity and disability in people with diabetes. Early recognition and management of risk factors can prevent or delay adverse outcomes. The risk of ulcers or amputations is increased in people who have the following risk factors: Previous amputation Past foot ulcer history Peripheral neuropathy Foot deformity Peripheral vascular disease Visual impairment Diabetic nephropathy (especially patients on dialysis) Poor glycemic control Cigarette smoking Many studies have been published proposing a range of tests that might usefully identify patients at risk for foot ulceration, creating confusion among practitioners as to which screening tests should be adopted in clinical practice. An ADA task force was therefore assembled in 2008 to concisely summarize recent literature in this area and then recommend what should be included in the comprehensive foot exam for adult patients with diabetes. Their recommendations are summarized below, but clinicians should refer to the task force report (385) for further details and practical descriptions of how to perform components of the comprehensive foot examination. At least annually, all adults with diabetes should undergo a comprehensive foot examination to identify high-risk conditions. Clinicians should ask about history of previous foot ulceration or amputation, neuropathic or peripheral vascular symptoms, impaired vision, tobacco use, and foot care practices. A general inspection of skin integrity and musculoskeletal deformities should be done in a well-lit room. Vascular assessment would include inspection and assessment of pedal pulses. The neurologic exam recommended is designed to identify LOPS rather than early neuropathy. The clinical examination to identify LOPS is simple and requires no expensive equipment. Five simple clinical tests (use of a 10-g monofilament, vibration testing using a 128-Hz tuning fork, tests of pinprick sensation, ankle reflex assessment, and testing vibration perception threshold with a biothesiometer), each with evidence from well-conducted prospective clinical cohort studies, are considered useful in the diagnosis of LOPS in the diabetic foot. The task force agrees that any of the five tests listed could be used by clinicians to identify LOPS, although ideally two of these should be regularly performed during the screening exam—normally the 10-g monofilament and one other test. One or more abnormal tests would suggest LOPS, while at least two normal tests (and no abnormal test) would rule out LOPS. The last test listed, vibration assessment using a biothesiometer or similar instrument, is widely used in the U.S.; however, identification of the patient with LOPS can easily be carried out without this or other expensive equipment. Initial screening for PAD should include a history for claudication and an assessment of the pedal pulses. A diagnostic ABI should be performed in any patient with symptoms of PAD. Due to the high estimated prevalence of PAD in patients with diabetes and the fact that many patients with PAD are asymptomatic, an ADA consensus statement on PAD (386) suggested that a screening ABI be performed in patients over 50 years of age and be considered in patients under 50 years of age who have other PAD risk factors (e.g., smoking, hypertension, hyperlipidemia, or duration of diabetes >10 years). Refer patients with significant symptoms or a positive ABI for further vascular assessment and consider exercise, medications, and surgical options (386). Patients with diabetes and high-risk foot conditions should be educated regarding their risk factors and appropriate management. Patients at risk should understand the implications of the loss of protective sensation, the importance of foot monitoring on a daily basis, the proper care of the foot, including nail and skin care, and the selection of appropriate footwear. Patients with LOPS should be educated on ways to substitute other sensory modalities (hand palpation, visual inspection) for surveillance of early foot problems. The patients’ understanding of these issues and their physical ability to conduct proper foot surveillance and care should be assessed. Patients with visual difficulties, physical constraints preventing movement, or cognitive problems that impair their ability to assess the condition of the foot and to institute appropriate responses will need other people, such as family members, to assist in their care. People with neuropathy or evidence of increased plantar pressure (e.g., erythema, warmth, callus, or measured pressure) may be adequately managed with well-fitted walking shoes or athletic shoes that cushion the feet and redistribute pressure. Callus can be debrided with a scalpel by a foot care specialist or other health professional with experience and training in foot care. People with bony deformities (e.g., hammertoes, prominent metatarsal heads, bunions) may need extra-wide or -depth shoes. People with extreme bony deformities (e.g., Charcot foot) who cannot be accommodated with commercial therapeutic footwear may need custom-molded shoes. Foot ulcers and wound care may require care by a podiatrist, orthopedic or vascular surgeon, or rehabilitation specialist experienced in the management of individuals with diabetes. Guidelines for treatment of diabetic foot ulcers have recently been updated (387). VII. ASSESSMENT OF COMMON COMORBID CONDITIONS Recommendations For patients with risk factors, signs or symptoms, consider assessment and treatment for common diabetes-associated conditions (see Table 14). (B) Table 14 Common comorbidities for which increased risk is associated with diabetes Hearing impairment Obstructive sleep apnea Fatty liver disease Low testosterone in men Periodontal disease Certain cancers Fractures Cognitive impairment Depression In addition to the commonly appreciated comorbidities of obesity, hypertension, and dyslipidemia, diabetes is also associated with other diseases or conditions at rates higher than those of age-matched people without diabetes. A few of the more common comorbidities are described herein and listed in Table 14. Hearing impairment Hearing impairment, both high frequency and low/mid frequency, is more common in people with diabetes, perhaps due to neuropathy and/or vascular disease. In an NHANES analysis, hearing impairment was about twice as great in people with diabetes compared with those without, after adjusting for age and other risk factors for hearing impairment (388). Controlling for age, race, and other demographic factors, high frequency loss in those with diabetes was significantly associated with history of CHD and with peripheral neuropathy, while low/mid frequency loss was associated with low HDL cholesterol and with poor reported health status (389). Obstructive sleep apnea Age-adjusted rates of obstructive sleep apnea, a risk factor for CVD, are significantly higher (4- to 10-fold) with obesity, especially with central obesity, in men and women (390). The prevalence in general populations with type 2 diabetes may be up to 23% (391), and in obese participants enrolled in the Look AHEAD trial exceeded 80% (392). Treatment of sleep apnea significantly improves quality of life and blood pressure control. The evidence for a treatment effect on glycemic control is mixed (393). Fatty liver disease Unexplained elevation of hepatic transaminase concentrations is significantly associated with higher BMI, waist circumference, triglycerides, and fasting insulin, and with lower HDL cholesterol. Type 2 diabetes and hypertension are independently associated with transaminase elevations in women (394). In a prospective analysis, diabetes was significantly associated with incident nonalcoholic chronic liver disease and with hepatocellular carcinoma (395). Interventions that improve metabolic abnormalities in patients with diabetes (weight loss, glycemic control, treatment with specific drugs for hyperglycemia or dyslipidemia) are also beneficial for fatty liver disease (396). Low testosterone in men Mean levels of testosterone are lower in men with diabetes compared with age-matched men without diabetes, but obesity is a major confounder (397). The issue of treatment in asymptomatic men is controversial. The evidence for effects of testosterone replacement on outcomes is mixed, and recent guidelines suggest that screening and treatment of men without symptoms are not recommended (398). Periodontal disease Periodontal disease is more severe, but not necessarily more prevalent, in patients with diabetes than those without (399). Numerous studies have suggested associations with poor glycemic control, nephropathy, and CVD, but most studies are highly confounded. A comprehensive assessment, and treatment of identified disease, is indicated in patients with diabetes, but the evidence that periodontal disease treatment improves glycemic control is mixed. A meta-analysis reported a significant 0.47% improvement in A1C, but noted multiple problems with the quality of the published studies included in the analysis (400). Several high-quality RCTs have not shown a significant effect (401). Cancer Diabetes (possibly only type 2 diabetes) is associated with increased risk of cancers of the liver, pancreas, endometrium, colon/rectum, breast, and bladder (402). The association may result from shared risk factors between type 2 diabetes and cancer (obesity, age, and physical inactivity) but may also be due to hyperinsulinemia or hyperglycemia (401,403). Patients with diabetes should be encouraged to undergo recommended age- and sex-appropriate cancer screenings and to reduce their modifiable cancer risk factors (obesity, smoking, and physical inactivity). Fractures Age-matched hip fracture risk is significantly increased in both type 1 (summary RR 6.3) and type 2 diabetes (summary RR 1.7) in both sexes (404). Type 1 diabetes is associated with osteoporosis, but in type 2 diabetes an increased risk of hip fracture is seen despite higher bone mineral density (BMD) (405). One study showed that prevalent vertebral fractures were significantly more common in men and women with type 2 diabetes, but were not associated with BMD (406). In three large observational studies of older adults, femoral neck BMD T-score and the WHO fracture risk algorithm (FRAX) score were associated with hip and nonspine fracture, although fracture risk was higher in diabetic participants compared with participants without diabetes for a given T-score and age or for a given FRAX score risk (407). It is appropriate to assess fracture history and risk factors in older patients with diabetes and recommend BMD testing if appropriate for the patient’s age and sex. For at-risk patients, it is reasonable to consider standard primary or secondary prevention strategies (reduce risk factors for falls, ensure adequate calcium and vitamin D intake, avoid use of medications that lower BMD, such as glucocorticoids), and to consider pharmacotherapy for high-risk patients. For patients with type 2 diabetes with fracture risk factors, avoiding use of thiazolidinediones is warranted. Cognitive impairment Diabetes is associated with significantly increased risk of cognitive decline, a greater rate of cognitive decline, and increased risk of dementia (408,409). In a 15-year prospective study of a community-dwelling people over the age of 60 years, the presence of diabetes at baseline significantly increased the age- and sex-adjusted incidence of all-cause dementia, Alzheimer disease, and vascular dementia compared with rates in those with normal glucose tolerance (410). In a substudy of the ACCORD study, there were no differences in cognitive outcomes between intensive and standard glycemic control, although there was significantly less of a decrement in total brain volume by magnetic resonance imaging in participants in the intensive arm (411). The effects of hyperglycemia and insulin on the brain are areas of intense research interest. Depression As discussed in Section V.H, depression is highly prevalent in people with diabetes and is associated with worse outcomes. VIII. DIABETES CARE IN SPECIFIC POPULATIONS A. Children and adolescents Recommendations As is the case for all children, children with diabetes or prediabetes should be encouraged to engage in at least 60 min of physical activity each day. (B) 1. Type 1 diabetes Three-quarters of all cases of type 1 diabetes are diagnosed in individuals 130/80 mmHg, if 95% exceeds that value) should be considered as soon as the diagnosis is confirmed. (E) ACE inhibitors should be considered for the initial treatment of hypertension, following appropriate reproductive counseling due to its potential teratogenic effects. (E) The goal of treatment is a blood pressure consistently 2 years of age soon after diagnosis (after glucose control has been established). If family history is not of concern, then consider the first lipid screening at puberty (≥10 years of age). For children diagnosed with diabetes at or after puberty, consider obtaining a fasting lipid profile soon after the diagnosis (after glucose control has been established). (E) For both age-groups, if lipids are abnormal, annual monitoring is reasonable. If LDL cholesterol values are within the accepted risk levels ( 160 mg/dL (4.1 mmol/L), or LDL cholesterol >130 mg/dL (3.4 mmol/L) and one or more CVD risk factors, is reasonable. (E) The goal of therapy is an LDL cholesterol value 1% above the normal range for a nondiabetic pregnant woman. Preconception care of diabetes appears to reduce the risk of congenital malformations. Five nonrandomized studies compared rates of major malformations in infants between women who participated in preconception diabetes care programs and women who initiated intensive diabetes management after they were already pregnant. The preconception care programs were multidisciplinary and designed to train patients in diabetes self-management with diet, intensified insulin therapy, and SMBG. Goals were set to achieve normal blood glucose concentrations, and >80% of subjects achieved normal A1C concentrations before they became pregnant. In all five studies, the incidence of major congenital malformations in women who participated in preconception care (range 1.0–1.7% of infants) was much lower than the incidence in women who did not participate (range 1.4–10.9% of infants) (106). One limitation of these studies is that participation in preconception care was self-selected rather than randomized. Thus, it is impossible to be certain that the lower malformation rates resulted fully from improved diabetes care. Nonetheless, the evidence supports the concept that malformations can be reduced or prevented by careful management of diabetes before pregnancy. Planned pregnancies greatly facilitate preconception diabetes care. Unfortunately, nearly two-thirds of pregnancies in women with diabetes are unplanned, leading to a persistent excess of malformations in infants of diabetic mothers. To minimize the occurrence of these devastating malformations, standard care for all women with diabetes who have childbearing potential, beginning at the onset of puberty or at diagnosis, should include 1) education about the risk of malformations associated with unplanned pregnancies and poor metabolic control and 2) use of effective contraception at all times, unless the patient has good metabolic control and is actively trying to conceive. Women contemplating pregnancy need to be seen frequently by a multidisciplinary team experienced in the management of diabetes before and during pregnancy. The goals of preconception care are to 1) involve and empower the patient in the management of her diabetes, 2) achieve the lowest A1C test results possible without excessive hypoglycemia, 3) assure effective contraception until stable and acceptable glycemia is achieved, and 4) identify, evaluate, and treat long-term diabetes complications such as retinopathy, nephropathy, neuropathy, hypertension, and CHD (106). Among the drugs commonly used in the treatment of patients with diabetes, a number may be relatively or absolutely contraindicated during pregnancy. Statins are category X (contraindicated for use in pregnancy) and should be discontinued before conception, as should ACE inhibitors (450). ARBs are category C (risk cannot be ruled out) in the first trimester but category D (positive evidence of risk) in later pregnancy and should generally be discontinued before pregnancy. Since many pregnancies are unplanned, health care professionals caring for any woman of childbearing potential should consider the potential risks and benefits of medications that are contraindicated in pregnancy. Women using medications such as statins or ACE inhibitors need ongoing family planning counseling. Among the oral antidiabetic agents, metformin and acarbose are classified as category B (no evidence of risk in humans) and all others as category C. Potential risks and benefits of oral antidiabetic agents in the preconception period must be carefully weighed, recognizing that data are insufficient to establish the safety of these agents in pregnancy. For further discussion of preconception care, see the ADA’s consensus statement on pre-existing diabetes and pregnancy (106) and the position statement (451) on this subject. C. Older adults Recommendations Older adults who are functional, cognitively intact, and have significant life expectancy should receive diabetes care with goals similar to those developed for younger adults. (E) Glycemic goals for some older adults might reasonably be relaxed, using individual criteria, but hyperglycemia leading to symptoms or risk of acute hyperglycemic complications should be avoided in all patients. (E) Other cardiovascular risk factors should be treated in older adults with consideration of the time frame of benefit and the individual patient. Treatment of hypertension is indicated in virtually all older adults, and lipid and aspirin therapy may benefit those with life expectancy at least equal to the time frame of primary or secondary prevention trials. (E) Screening for diabetes complications should be individualized in older adults, but particular attention should be paid to complications that would lead to functional impairment. (E) Diabetes is an important health condition for the aging population; at least 20% of patients over the age of 65 years have diabetes, and this number can be expected to grow rapidly in the coming decades. Older individuals with diabetes have higher rates of premature death, functional disability, and coexisting illnesses such as hypertension, CHD, and stroke than those without diabetes. Older adults with diabetes are also at greater risk than other older adults for several common geriatric syndromes, such as polypharmacy, depression, cognitive impairment, urinary incontinence, injurious falls, and persistent pain. A consensus report on diabetes and older adults (452) influenced the following discussion and recommendations. The care of older adults with diabetes is complicated by their clinical and functional heterogeneity. Some older individuals developed diabetes years earlier and may have significant complications; others who are newly diagnosed may have had years of undiagnosed diabetes with resultant complications or may have truly recent-onset disease and few or no complications. Some older adults with diabetes are frail and have other underlying chronic conditions, substantial diabetes-related comorbidity, or limited physical or cognitive functioning. Other older individuals with diabetes have little comorbidity and are active. Life expectancies are highly variable for this population, but often longer than clinicians realize. Providers caring for older adults with diabetes must take this heterogeneity into consideration when setting and prioritizing treatment goals. There are few long-term studies in older adults demonstrating the benefits of intensive glycemic, blood pressure, and lipid control. Patients who can be expected to live long enough to reap the benefits of long-term intensive diabetes management, who have good cognitive and functional function, and who choose to do so via shared decision making may be treated using therapeutic interventions and goals similar to those for younger adults with diabetes. As with all patients, DSME and ongoing DSMS are vital components of diabetes care for older adults and their caregivers. For patients with advanced diabetes complications, life-limiting comorbid illness, or substantial cognitive or functional impairment, it is reasonable to set less intensive glycemic target goals. These patients are less likely to benefit from reducing the risk of microvascular complications and more likely to suffer serious adverse effects from hypoglycemia. However, patients with poorly controlled diabetes may be subject to acute complications of diabetes, including dehydration, poor wound healing, and hyperglycemic hyperosmolar coma. Glycemic goals at a minimum should avoid these consequences. Although control of hyperglycemia may be important in older individuals with diabetes, greater reductions in morbidity and mortality may result from control of other cardiovascular risk factors rather than from tight glycemic control alone. There is strong evidence from clinical trials of the value of treating hypertension in the elderly (453,454). There is less evidence for lipid-lowering and aspirin therapy, although the benefits of these interventions for primary and secondary prevention are likely to apply to older adults whose life expectancies equal or exceed the time frames seen in clinical trials. Special care is required in prescribing and monitoring pharmacological therapy in older adults. Costs may be a significant factor, especially since older adults tend to be on many medications. Metformin may be contraindicated because of renal insufficiency or significant heart failure. Thiazolidinediones, if used at all, should be used very cautiously in those with, or at risk for, CHF and have also been associated with fractures. Sulfonylureas, other insulin secretagogues, and insulin can cause hypoglycemia. Insulin use requires that patients or caregivers have good visual and motor skills and cognitive ability. Dipeptidyl peptidase 4 (DPP-4) inhibitors have few side effects, but their costs may be a barrier to some older patients; the latter is also the case for GLP-1 agonists. Screening for diabetes complications in older adults also should be individualized. Particular attention should be paid to complications that can develop over short periods of time and/or that would significantly impair functional status, such as visual and lower-extremity complications. D. Cystic fibrosis–related diabetes Recommendations Annual screening for cystic fibrosis–related diabetes (CFRD) with OGTT should begin by age 10 years in all patients with cystic fibrosis who do not have CFRD (B). Use of A1C as a screening test for CFRD is not recommended. (B) During a period of stable health, the diagnosis of CFRD can be made in cystic fibrosis patients according to usual glucose criteria. (E) Patients with CFRD should be treated with insulin to attain individualized glycemic goals. (A) Annual monitoring for complications of diabetes is recommended, beginning 5 years after the diagnosis of CFRD. (E) CFRD is the most common comorbidity in persons with cystic fibrosis, occurring in about 20% of adolescents and 40–50% of adults. The additional diagnosis of diabetes in this population is associated with worse nutritional status, more severe inflammatory lung disease, and greater mortality from respiratory failure. Insulin insufficiency related to partial fibrotic destruction of the islet mass is the primary defect in CFRD. Genetically determined function of the remaining β-cells and insulin resistance associated with infection and inflammation may also play a role. Encouraging new data suggest that early detection and aggressive insulin therapy have narrowed the gap in mortality between cystic fibrosis patients with and without diabetes and have eliminated the sex difference in mortality (455). Recommendations for the clinical management of CFRD can be found in the recent ADA position statement on this topic (456). IX. DIABETES CARE IN SPECIFIC SETTINGS A. Diabetes care in the hospital Recommendations All patients with diabetes admitted to the hospital should have their diabetes clearly identified in the medical record. (E) All patients with diabetes should have an order for blood glucose monitoring, with results available to all members of the health care team. (E) Goals for blood glucose levels: Critically ill patients: Insulin therapy should be initiated for treatment of persistent hyperglycemia starting at a threshold of no greater than 180 mg/dL (10 mmol/L). Once insulin therapy is started, a glucose range of 140–180 mg/dL (7.8–10 mmol/L) is recommended for the majority of critically ill patients. (A) More stringent goals, such as 110–140 mg/dL (6.1–7.8 mmol/L) may be appropriate for selected patients, as long as this can be achieved without significant hypoglycemia. (C) Critically ill patients require an intravenous insulin protocol that has demonstrated efficacy and safety in achieving the desired glucose range without increasing risk for severe hypoglycemia. (E) Non–critically ill patients: There is no clear evidence for specific blood glucose goals. If treated with insulin, the premeal blood glucose targets generally 140 mg/dL (7.8 mmol/L). Levels that are significantly and persistently above this may require treatment in hospitalized patients. A1C values >6.5% suggest, in undiagnosed patients, that diabetes preceded hospitalization (466). Hypoglycemia has been defined as any blood glucose <70 mg/dL (3.9 mmol/L). This is the standard definition in outpatients and correlates with the initial threshold for the release of counter-regulatory hormones. Severe hypoglycemia in hospitalized patients has been defined by many as <40 mg/dL (2.2 mmol/L), although this is lower than the ∼50 mg/dL (2.8 mmol/L) level at which cognitive impairment begins in normal individuals (467). As with hyperglycemia, hypoglycemia among inpatients is also associated with adverse short- and long-term outcomes. Early recognition and treatment of mild to moderate hypoglycemia (40–69 mg/dL [2.2–3.8 mmol/L]) can prevent deterioration to a more severe episode with potential adverse sequelae (468). Critically ill patients Based on the weight of the available evidence, for the majority of critically ill patients in the ICU setting, insulin infusion should be used to control hyperglycemia, with a starting threshold of no higher than 180 mg/dL (10.0 mmol/L). Once intravenous insulin is started, the glucose level should be maintained between 140 and 180 mg/dL (7.8 and 10.0 mmol/L). Greater benefit maybe realized at the lower end of this range. Although strong evidence is lacking, somewhat lower glucose targets may be appropriate in selected patients. One small study suggested that medical intensive care unit (MICU) patients treated to targets of 120–140 mg/dL had less negative nitrogen balance than those treated to higher targets (469). However, targets <110 mg/dL (6.1 mmol/L) are not recommended. Use of insulin infusion protocols with demonstrated safety and efficacy, resulting in low rates of hypoglycemia, are highly recommended (468). Non–critically ill patients With no prospective RCT data to inform specific glycemic targets in non–critically ill patients, recommendations are based on clinical experience and judgment (470). For the majority of non–critically ill patients treated with insulin, premeal glucose targets should generally be <140 mg/dL (7.8 mmol/L) with random blood glucose <180 mg/dL (10.0 mmol/L), as long as these targets can be safely achieved. To avoid hypoglycemia, consideration should be given to reassessing the insulin regimen if blood glucose levels fall below 100 mg/dL (5.6 mmol/L). Modification of the regimen is required when blood glucose values are <70 mg/dL (3.9 mmol/L), unless the event is easily explained by other factors (such as a missed meal). There is some evidence that systematic attention to hyperglycemia in the emergency room leads to better glycemic control in the hospital for those subsequently admitted (471). Occasional patients with a prior history of successful tight glycemic control in the outpatient setting who are clinically stable may be maintained with a glucose range below the above cut points. Conversely, higher glucose ranges may be acceptable in terminally ill patients or in patients with severe comorbidities, as well as in those in patient care settings where frequent glucose monitoring or close nursing supervision is not feasible. Clinical judgment, combined with ongoing assessment of the patient’s clinical status, including changes in the trajectory of glucose measures, the severity of illness, nutritional status, or concurrent use of medications that might affect glucose levels (e.g., steroids, octreotide), must be incorporated into the day-to-day decisions regarding insulin dosing (468). 2. Antihyperglycemic agents in hospitalized patients In the hospital setting, insulin therapy is the preferred method of glycemic control in majority of clinical situations (468). In the ICU, intravenous infusion is the preferred route of insulin administration. When the patient is transitioned off intravenous insulin to subcutaneous therapy, precautions should be taken to prevent hyperglycemia escape (472,473). Outside of critical care units, scheduled subcutaneous insulin that delivers basal, nutritional, and correction (supplemental) components is preferred. Typical dosing schemes are based on body weight, with some evidence that patients with renal insufficiency should be treated with lower doses (474). Prolonged therapy with sliding-scale insulin (SSI) as the sole regimen is ineffective in the majority of patients, increases risk of both hypoglycemia and hyperglycemia, and has recently been shown in a randomized trial to be associated with adverse outcomes in general surgery patients with type 2 diabetes (475). SSI is potentially dangerous in type 1 diabetes (468). The reader is referred to several recent publications and reviews that describe currently available insulin preparations and protocols and provide guidance in use of insulin therapy in specific clinical settings including parenteral nutrition (476), enteral tube feedings and with high dose glucocorticoid therapy (468). There are no data on the safety and efficacy of oral agents and injectable noninsulin therapies such as GLP-1 analogs and pramlintide in the hospital. They are generally considered to have a limited role in the management of hyperglycemia in conjunction with acute illness. Continuation of these agents may be appropriate in selected stable patients who are expected to consume meals at regular intervals, and they may be initiated or resumed in anticipation of discharge once the patient is clinically stable. Specific caution is required with metformin, due to the possibility that a contraindication may develop during the hospitalization, such as renal insufficiency, unstable hemodynamic status, or need for an imaging study that requires a radio-contrast dye. 3. Preventing hypoglycemia In the hospital, multiple risk factors for hypoglycemia are present. Patients with or without diabetes may experience hypoglycemia in the hospital in association with altered nutritional state, heart failure, renal or liver disease, malignancy, infection, or sepsis. Additional triggering events leading to iatrogenic hypoglycemia include sudden reduction of corticosteroid dose, altered ability of the patient to report symptoms, reduction of oral intake, emesis, new NPO status, inappropriate timing of short- or rapid-acting insulin in relation to meals, reduction of rate of administration of intravenous dextrose, and unexpected interruption of enteral feedings or parenteral nutrition. Despite the preventable nature of many inpatient episodes of hypoglycemia, institutions are more likely to have nursing protocols for the treatment of hypoglycemia than for its prevention. Tracking such episodes and analyzing their causes are important quality-improvement activities (468). 4. Diabetes care providers in the hospital Inpatient diabetes management may be effectively championed and/or provided by primary care physicians, endocrinologists, intensivists, or hospitalists. Involvement of appropriately trained specialists or specialty teams may reduce length of stay, improve glycemic control, and improve outcomes (468). In the care of diabetes, implementation of standardized order sets for scheduled and correction-dose insulin may reduce reliance on sliding-scale management. As hospitals move to comply with “meaningful use” regulations for electronic health records, as mandated by the Health Information Technology Act, efforts should be made to assure that all components of structured insulin order sets are incorporated into electronic insulin order sets (477,478). A team approach is needed to establish hospital pathways. To achieve glycemic targets associated with improved hospital outcomes, hospitals will need multidisciplinary support to develop insulin management protocols that effectively and safely enable achievement of glycemic targets (479). 5. Self-management in the hospital Self-management of diabetes in the hospital may be appropriate for competent adult patients who have a stable level of consciousness, have reasonably stable daily insulin requirements, successfully conduct self-management of diabetes at home, have physical skills needed to successfully self-administer insulin and perform SMBG, have adequate oral intake, and are proficient in carbohydrate counting, use of multiple daily insulin injections or insulin pump therapy, and sick-day management. The patient and physician, in consultation with nursing staff, must agree that patient self-management is appropriate under the conditions of hospitalization. Patients who use CSII pump therapy in the outpatient setting can be candidates for diabetes self-management in the hospital, provided that they have the mental and physical capacity to do so (468). A hospital policy and procedures delineating inpatient guidelines for CSII therapy are advisable, and availability of hospital personnel with expertise in CSII therapy is essential. It is important that nursing personnel document basal rates and bolus doses taken on a regular basis (at least daily). 6. MNT in the hospital The goals of MNT are to optimize glycemic control, to provide adequate calories to meet metabolic demands, and to create a discharge plan for follow-up care (457,480). The ADA does not endorse any single meal plan or specified percentages of macronutrients, and the term “ADA diet” should no longer be used. Current nutrition recommendations advise individualization based on treatment goals, physiological parameters, and medication usage. Consistent carbohydrate meal plans are preferred by many hospitals because they facilitate matching the prandial insulin dose to the amount of carbohydrate consumed (481). Because of the complexity of nutrition issues in the hospital, a registered dietitian, knowledgeable and skilled in MNT, should serve as an inpatient team member. The dietitian is responsible for integrating information about the patient’s clinical condition, eating, and lifestyle habits and for establishing treatment goals in order to determine a realistic plan for nutrition therapy (482,483). 7. Bedside blood glucose monitoring POC blood glucose monitoring performed at the bedside is used to guide insulin dosing. In the patient who is receiving nutrition, the timing of glucose monitoring should match carbohydrate exposure. In the patient who is not receiving nutrition, glucose monitoring is performed every 4 to 6 h (484,485). More frequent blood glucose testing ranging from every 30 min to every 2 h is required for patients on intravenous insulin infusions. Safety standards should be established for blood glucose monitoring prohibiting sharing of finger-stick lancing devices, lancets, needles, and meters to reduce the risk of transmission of blood borne diseases. Shared lancing devices carry essentially the same risk as is conferred from sharing of syringes and needles (486). Accuracy of blood glucose measurements using POC meters has limitations that must be considered. Although the FDA allows a +/− 20% error for blood glucose meters, questions about the appropriateness of these criteria have been raised (388). Glucose measures differ significantly between plasma and whole blood, terms that are often used interchangeably and can lead to misinterpretation. Most commercially available capillary blood glucose meters introduce a correction factor of ∼1.12 to report a “plasma-adjusted” value (487). Significant discrepancies between capillary, venous, and arterial plasma samples have been observed in patients with low or high hemoglobin concentrations, hypoperfusion, and the presence of interfering substances particularly maltose, as contained in immunoglobulins (488). Analytical variability has been described with several POC meters (489). Increasingly newer generation POC blood glucose meters correct for variation in hematocrit and for interfering substances. Any glucose result that does not correlate with the patient’s status should be confirmed through conventional laboratory sampling of plasma glucose. The FDA has become increasingly concerned about the use of POC blood glucose meters in the hospital and is presently reviewing matters related to their use. 8. Discharge planning and DSME Transition from the acute care setting is a high-risk time for all patients, not just those with diabetes or new hyperglycemia. Although there is an extensive literature concerning safe transition within and from the hospital, little of it is specific to diabetes (490). It is important to remember that diabetes discharge planning is not a separate entity, but is part of an overall discharge plan. As such, discharge planning begins at admission to the hospital and is updated as projected patient needs change. Inpatients may be discharged to varied settings, including home (with or without visiting nurse services), assisted living, rehabilitation, or skilled nursing facilities. The latter two sites are generally staffed by health professionals, so diabetes discharge planning will be limited to communication of medication and diet orders. For the patient who is discharged to assisted living or to home, the optimal program will need to consider the type and severity of diabetes, the effects of the patient’s illness on blood glucose levels, and the capacities and desires of the patient. Smooth transition to outpatient care should be ensured. The Agency for Healthcare Research and Quality (AHRQ) recommends that at a minimum, discharge plans include the following: Medication reconciliation: The patient’s medications must be cross-checked to ensure that no chronic medications were stopped and to ensure the safety of new prescriptions. Whenever possible, prescriptions for new or changed medication should be filled and reviewed with the patient and family at or before discharge. Structured discharge communication: Information on medication changes, pending tests and studies, and follow-up needs must be accurately and promptly communicated to outpatient physicians. Discharge summaries should be transmitted to the primary physician as soon as possible after discharge. Appointment keeping behavior is enhanced when the inpatient team schedules outpatient medical follow-up prior to discharge. Ideally the inpatient care providers or case managers/discharge planners will schedule follow-up visit(s) with the appropriate professionals, including the primary care provider, endocrinologist, and diabetes educator (491). Teaching diabetes self-management to patients in hospitals is a challenging task. Patients are ill, under increased stress related to their hospitalization and diagnosis, and in an environment not conducive to learning. Ideally, people with diabetes should be taught at a time and place conducive to learning: as an outpatient in a recognized program of diabetes education. For the hospitalized patient, diabetes “survival skills” education is generally a feasible approach to provide sufficient information and training to enable safe care at home. Patients hospitalized because of a crisis related to diabetes management or poor care at home need education to prevent subsequent episodes of hospitalization. An assessment of the need for a home health referral or referral to an outpatient diabetes education program should be part of discharge planning for all patients. DSME cannot wait until discharge, especially in those new to insulin therapy or in whom the diabetes regimen has been substantially altered during the hospitalization. It is recommended that the following areas of knowledge be reviewed and addressed prior to hospital discharge: Identification of health care provider who will provide diabetes care after discharge Level of understanding related to the diagnosis of diabetes, SMBG, and explanation of home blood glucose goals Definition, recognition, treatment, and prevention of hyperglycemia and hypoglycemia Information on consistent eating patterns When and how to take blood glucose–lowering medications including insulin administration (if going home on insulin) Sick-day management Proper use and disposal of needles and syringes It is important that patients be provided with appropriate durable medical equipment, medication, supplies, and prescriptions at the time of discharge in order to avoid a potentially dangerous hiatus in care. These supplies/prescriptions should include the following: Insulin (vials or pens) if needed Syringes or pen needles (if needed) Oral medications (if needed) Blood glucose meter and strips Lancets and lancing device Urine ketone strips (type 1) Glucagon emergency kit (insulin-treated) Medical alert application/charm More expanded diabetes education can be arranged in the community. An outpatient follow-up visit with the primary care provider, endocrinologist, or diabetes educator within 1 month of discharge is advised for all patients having hyperglycemia in the hospital. Clear communication with outpatient providers either directly or via hospital discharge summaries facilitates safe transitions to outpatient care. Providing information regarding the cause or the plan for determining the cause of hyperglycemia, related complications and comorbidities, and recommended treatments can assist outpatient providers as they assume ongoing care. B. Diabetes and employment Any person with diabetes, whether insulin treated or noninsulin treated, should be eligible for any employment for which he/she is otherwise qualified. Employment decisions should never be based on generalizations or stereotypes regarding the effects of diabetes. When questions arise about the medical fitness of a person with diabetes for a particular job, a health care professional with expertise in treating diabetes should perform an individualized assessment. See the ADA position statement on diabetes and employment (492). C. Diabetes and driving A large percentage of people with diabetes in the U.S. and elsewhere seek a license to drive, either for personal or employment purposes. There has been considerable debate whether, and the extent to which, diabetes may be a relevant factor in determining the driver ability and eligibility for a license. People with diabetes are subject to a great variety of licensing requirements applied by both state and federal jurisdictions, which may lead to loss of employment or significant restrictions on a person’s license. Presence of a medical condition that can lead to significantly impaired consciousness or cognition may lead to drivers being evaluated for fitness to drive. For diabetes, this typically arises when the person has had a hypoglycemic episode behind the wheel, even if this did not lead to a motor vehicle accident. Epidemiological and simulator data suggest that people with insulin-treated diabetes have a small increase in risk of motor vehicle accidents, primarily due to hypoglycemia and decreased awareness of hypoglycemia. This increase (RR 1.12–1.19) is much smaller than the risks associated with teenage male drivers (RR 42), driving at night (RR 142), driving on rural roads compared with urban roads (RR 9.2), and obstructive sleep apnea (RR 2.4), all of which are accepted for unrestricted licensure. The ADA position statement on diabetes and driving (493) recommends against blanket restrictions based on the diagnosis of diabetes and urges individual assessment by a health care professional knowledgeable in diabetes if restrictions on licensure are being considered. Patients should be evaluated for decreased awareness of hypoglycemia, hypoglycemia episodes while driving, or severe hypoglycemia. Patients with retinopathy or peripheral neuropathy require assessment to determine if those complications interfere with operation of a motor vehicle. Health care professionals should be cognizant of the potential risk of driving with diabetes and counsel their patients about detecting and avoiding hypoglycemia while driving. D. Diabetes management in correctional institutions People with diabetes in correctional facilities should receive care that meets national standards. Because it is estimated that nearly 80,000 inmates have diabetes, correctional institutions should have written policies and procedures for the management of diabetes and for training of medical and correctional staff in diabetes care practices. See the ADA position statement on diabetes management in correctional institutions (494) for further discussion. X. STRATEGIES FOR IMPROVING DIABETES CARE Recommendations Care should be aligned with components of the Chronic Care Model (CCM) to ensure productive interactions between a prepared proactive practice team and an informed activated patient. (A) When feasible, care systems should support team-based care, community involvement, patient registries, and embedded decision support tools to meet patient needs. (B) Treatment decisions should be timely and based on evidence-based guidelines that are tailored to individual patient preferences, prognoses, and comorbidities. (B) A patient-centered communication style should be employed that incorporates patient preferences, assesses literacy and numeracy, and addresses cultural barriers to care. (B) There has been steady improvement in the proportion of diabetic patients achieving recommended levels of A1C, blood pressure, and LDL cholesterol in the last 10 years, both in primary care settings and in endocrinology practices. Mean A1C nationally has declined from 7.82% in 1999–2000 to 7.18% in 2004 based on NHANES data (495). This has been accompanied by improvements in lipids and blood pressure control and led to substantial reductions in end-stage microvascular complications in those with diabetes. Nevertheless in some studies only 57.1% of adults with diagnosed diabetes achieved an A1C of <7%, only 45.5% had a blood pressure <130/80 mmHg, and just 46.5% had a total cholesterol <200 mg/dL, with only 12.2% of people with diabetes achieving all three treatment goals (496). Evidence also suggests that progress in risk factor control may be slowing (497). Certain patient groups, such as patients with complex comorbidities, financial or other social hardships, and/or limited English proficiency, may present particular challenges to goal-based care (498,499). Persistent variation in quality of diabetes care across providers and across practice settings even after adjusting for patient factors indicates that there remains potential for substantial further improvements in diabetes care. Although numerous interventions to improve adherence to the recommended standards have been implemented, a major barrier to optimal care is a delivery system that too often is fragmented, lacks clinical information capabilities, often duplicates services, and is poorly designed for the coordinated delivery of chronic care. The CCM has been shown in numerous studies to be an effective framework for improving the quality of diabetes care (500). The CCM includes six core elements for the provision of optimal care of patients with chronic disease: 1) delivery system design (moving from a reactive to a proactive care delivery system where planned visits are coordinated through a team based approach), 2) self-management support, 3) decision support (basing care on evidence-based, effective care guidelines), 4) clinical information systems (using registries that can provide patient-specific and population-based support to the care team), 5) community resources and policies (identifying or developing resources to support healthy lifestyles), and 6) health systems (to create a quality-oriented culture). Redefinition of the roles of the clinic staff and promoting self-management on the part of the patient are fundamental to the successful implementation of the CCM (501). Collaborative, multidisciplinary teams are best suited to provide such care for people with chronic conditions such as diabetes and to facilitate patients’ performance of appropriate self-management (163,165,220,502). NDEP maintains an online resource (www.betterdiabetescare.nih.gov) to help health care professionals design and implement more effective health care delivery systems for those with diabetes. Three specific objectives, with references to literature that outlines practical strategies to achieve each, are outlined below. Objective 1: Optimize provider and team behavior The care team should prioritize timely and appropriate intensification of lifestyle and/or pharmaceutical therapy of patients who have not achieved beneficial levels of blood pressure, lipid, or glucose control (503). Strategies such as explicit goal setting with patients (504); identifying and addressing language, numeracy, or cultural barriers to care (505–508); integrating evidence-based guidelines and clinical information tools into the process of care (509–511); and incorporating care management teams including nurses, pharmacists, and other providers (512–515) have each been shown to optimize provider and team behavior and thereby catalyze reduction in A1C, blood pressure, and LDL cholesterol. Objective 2: Support patient behavior change Successful diabetes care requires a systematic approach to supporting patients’ behavior change efforts, including a) healthy lifestyle changes (physical activity, healthy eating, nonuse of tobacco, weight management, effective coping), b) disease self-management (medication taking and management; self-monitoring of glucose and blood pressure when clinically appropriate), and c) prevention of diabetes complications (self-monitoring of foot health; active participation in screening for eye, foot, and renal complications; immunizations). High-quality DSME has been shown to improve patient self-management, satisfaction, and glucose control (184,516), as has delivery of ongoing DSMS so that gains achieved during DSME are sustained (134,135,152). National DSME standards call for an integrated approach that includes clinical content and skills, behavioral strategies (goal-setting, problem solving), and addressing emotional concerns in each needed curriculum content area. Objective 3: Change the system of care The most successful practices have an institutional priority for providing high quality of care (517). Changes that have been shown to increase quality of diabetes care include basing care on evidence-based guidelines (518), expanding the role of teams and staff (501,519), redesigning the processes of care (520), implementing electronic health record tools (521,522), activating and educating patients (523,524), and identifying and/or developing and engaging community resources and public policy that support healthy lifestyles (525). Recent initiatives such as the Patient-Centered Medical Home show promise to improve outcomes through coordinated primary care and offer new opportunities for team-based chronic disease care (526). Alterations in reimbursement that reward the provision of appropriate and high-quality care rather than visit-based billing (527) and that can accommodate the need to personalize care goals may provide additional incentives to improve diabetes care (528). It is clear that optimal diabetes management requires an organized, systematic approach and involvement of a coordinated team of dedicated health care professionals working in an environment where patient-centered high-quality care is a priority.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Adherence to medication.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.

              Cardiovascular morbidity is a major burden in patients with type 2 diabetes. In the Steno-2 Study, we compared the effect of a targeted, intensified, multifactorial intervention with that of conventional treatment on modifiable risk factors for cardiovascular disease in patients with type 2 diabetes and microalbuminuria. The primary end point of this open, parallel trial was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, revascularization, and amputation. Eighty patients were randomly assigned to receive conventional treatment in accordance with national guidelines and 80 to receive intensive treatment, with a stepwise implementation of behavior modification and pharmacologic therapy that targeted hyperglycemia, hypertension, dyslipidemia, and microalbuminuria, along with secondary prevention of cardiovascular disease with aspirin. The mean age of the patients was 55.1 years, and the mean follow-up was 7.8 years. The decline in glycosylated hemoglobin values, systolic and diastolic blood pressure, serum cholesterol and triglyceride levels measured after an overnight fast, and urinary albumin excretion rate were all significantly greater in the intensive-therapy group than in the conventional-therapy group. Patients receiving intensive therapy also had a significantly lower risk of cardiovascular disease (hazard ratio, 0.47; 95 percent confidence interval, 0.24 to 0.73), nephropathy (hazard ratio, 0.39; 95 percent confidence interval, 0.17 to 0.87), retinopathy (hazard ratio, 0.42; 95 percent confidence interval, 0.21 to 0.86), and autonomic neuropathy (hazard ratio, 0.37; 95 percent confidence interval, 0.18 to 0.79). A target-driven, long-term, intensified intervention aimed at multiple risk factors in patients with type 2 diabetes and microalbuminuria reduces the risk of cardiovascular and microvascular events by about 50 percent. Copyright 2003 Massachusetts Medical Society
                Bookmark

                Author and article information

                Affiliations
                [ ]Global Medical Affairs, Medical Department, Lilly, S.A., Avda. de la Industria 30, 28108 Alcobendas, Madrid, Spain
                [ ]Medical Department, Lilly, S.A., Alcobendas, Madrid, Spain
                [ ]Department of Clinical Medicine, Cathedra of Family Medicine, University Miguel Hernández, Alicante, Spain
                Contributors
                garcia_luis-emilio@lilly.com
                Journal
                Diabetes Ther
                Diabetes Ther
                Diabetes Therapy
                Springer Healthcare (Heidelberg )
                1869-6953
                1869-6961
                30 August 2013
                30 August 2013
                December 2013
                : 4
                : 2
                : 175-194
                23990497
                3889324
                34
                10.1007/s13300-013-0034-y
                © The Author(s) 2013
                Categories
                Review
                Custom metadata
                © Springer Healthcare 2013

                Comments

                Comment on this article