12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hormonal regulation of the hypothalamic melanocortin system

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS) plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin, and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.

          The adipocyte-specific hormone leptin, the product of the obese (ob) gene, regulates adipose-tissue mass through hypothalamic effects on satiety and energy expenditure. Leptin acts through the leptin receptor, a single-transmembrane-domain receptor of the cytokine-receptor family. In rodents, homozygous mutations in genes encoding leptin or the leptin receptor cause early-onset morbid obesity, hyperphagia and reduced energy expenditure. These rodents also show hypercortisolaemia, alterations in glucose homeostasis, dyslipidaemia, and infertility due to hypogonadotropic hypogonadisms. In humans, leptin deficiency due to a mutation in the leptin gene is associated with early-onset obesity. Here we describe a homozygous mutation in the human leptin receptor gene that results in a truncated leptin receptor lacking both the transmembrane and the intracellular domains. In addition to their early-onset morbid obesity, patients homozygous for this mutation have no pubertal development and their secretion of growth hormone and thyrotropin is reduced. These results indicate that leptin is an important physiological regulator of several endocrine functions in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abnormal splicing of the leptin receptor in diabetic mice.

            Mutations in the mouse diabetes (db) gene result in obesity and diabetes in a syndrome resembling morbid human obesity. Previous data suggest that the db gene encodes the receptor for the obese (ob) gene product, leptin. A leptin receptor was recently cloned from choroid plexus and shown to map to the same 6-cM interval on mouse chromosome 4 as db. This receptor maps to the same 300-kilobase interval as db, and has at least six alternatively spliced forms. One of these splice variants is expressed at a high level in the hypothalamus, and is abnormally spliced in C57BL/Ks db/db mice. The mutant protein is missing the cytoplasmic region, and is likely to be defective in signal transduction. This suggests that the weight-reducing effects of leptin may be mediated by signal transduction through a leptin receptor in the hypothalamus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid rewiring of arcuate nucleus feeding circuits by leptin.

              The fat-derived hormone leptin regulates energy balance in part by modulating the activity of neuropeptide Y and proopiomelanocortin neurons in the hypothalamic arcuate nucleus. To study the intrinsic activity of these neurons and their responses to leptin, we generated mice that express distinct green fluorescent proteins in these two neuronal types. Leptin-deficient (ob/ob) mice differed from wild-type mice in the numbers of excitatory and inhibitory synapses and postsynaptic currents onto neuropeptide Y and proopiomelanocortin neurons. When leptin was delivered systemically to ob/ob mice, the synaptic density rapidly normalized, an effect detectable within 6 hours, several hours before leptin's effect on food intake. These data suggest that leptin-mediated plasticity in the ob/ob hypothalamus may underlie some of the hormone's behavioral effects.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                09 December 2014
                2014
                : 5
                : 480
                Affiliations
                [1] 1Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine New Haven, CT, USA
                [2] 2Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine New Haven, CT, USA
                [3] 3Department of Neurobiology, Yale University School of Medicine New Haven, CT, USA
                [4] 4Section of Comparative Medicine, Yale University School of Medicine New Haven, CT, USA
                Author notes

                Edited by: Antonia Lanni, Second University of Naples, Italy

                Reviewed by: Ursula H. Winzer-Serhan, Texas A&M Health Science Center, USA; Virginie Tolle, Institut National de la Santé et de la Recherche Médicale, France

                *Correspondence: Sabrina Diano, Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, FMB 302A/333 Cedar Street, PO Box 208063, New Haven, CT 06520-208063, USA e-mail: sabrina.diano@ 123456yale.edu

                This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00480
                4260486
                25538630
                756f7f66-b89e-4c3e-989d-f551a31e953d
                Copyright © 2014 Kim, Leyva and Diano.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 October 2014
                : 24 November 2014
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 111, Pages: 7, Words: 6960
                Categories
                Physiology
                Mini Review Article

                Anatomy & Physiology
                hypothalamic melanocortin system,arcuate nucleus,pro-opiomelanocortin (pomc),neuropeptide y (npy),agouti-related peptide (agrp),hormones,obesity

                Comments

                Comment on this article