33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases.

      Stroke; a Journal of Cerebral Circulation
      Aneurysm, Ruptured, metabolism, pathology, Antigens, CD, Cell Movement, Cell Proliferation, Fibrosis, Humans, Immunohistochemistry, Intracranial Aneurysm, Myocytes, Smooth Muscle, Thrombosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cellular mechanisms of degeneration and repair preceding rupture of the saccular cerebral artery aneurysm wall need to be elucidated for rational design of growth factor or drug-releasing endovascular devices. Patient records, preoperative vascular imaging studies, and the snap-frozen fundi resected after microsurgical clipping from 66 aneurysms were studied. Immunostainings for markers of smooth muscle cell (SMC) phenotype, proliferation, and inflammatory cell subtypes and TUNEL reaction were performed. Unruptured (24) and ruptured (42) aneurysms had similar dimensions (median diameter in unruptured 6 mm; median in ruptured 7 mm; P=0.308). We identified 4 basic types of aneurysm wall that associated with rupture: (1) endothelialized wall with linearly organized SMCs (17/66; 42% ruptured), (2) thickened wall with disorganized SMCs (20/66; 55% ruptured), (3) hypocellular wall with either myointimal hyperplasia or organizing luminal thrombosis (14/66; 64% ruptured), and (4) an extremely thin thrombosis-lined hypocellular wall (15/66; 100% ruptured). Apoptosis, de-endothelialization, luminal thrombosis, SMC proliferation, and T-cell and macrophage infiltration associated with rupture. Furthermore, macrophage infiltration associated with SMC proliferation, and both were increased in ruptured aneurysms resected <12 hours from rupture, suggesting that these were not just reactive changes. Before rupture, the wall of saccular cerebral artery aneurysm undergoes morphological changes associated with remodeling of the aneurysm wall. Some of these changes, like SMC proliferation and macrophage infiltration, likely reflect ongoing repair attempts that could be enhanced with pharmacological therapy.

          Related collections

          Author and article information

          Comments

          Comment on this article