+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A factor XIa-activatable hirudin-albumin fusion protein reduces thrombosis in mice without promoting blood loss

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Hirudin is a potent thrombin inhibitor but its antithrombotic properties are offset by bleeding side-effects. Because hirudin’s N-terminus must engage thrombin’s active site for effective inhibition, fusing a cleavable peptide at this site may improve hirudin’s risk/benefit ratio as a therapeutic agent. Previously we engineered a plasmin cleavage site (C) between human serum albumin (HSA) and hirudin variant 3 (HV3) in fusion protein HSACHV3. Because coagulation factor XI (FXI) is more involved in thrombosis than hemostasis, we hypothesized that making HV3 activity FXIa-dependent would also improve HV3’s potential therapeutic profile. We combined albumin fusion for half-life extension of hirudin with positioning of an FXIa cleavage site N-terminal to HV3, and assessed in vitro and in vivo properties of this novel protein.


          FXIa cleavage site EPR was employed. Fusion protein EPR-HV3HSA but not HSAEPR-HV3 was activated by FXIa in vitro. FVIIa, FXa, FXIIa, or plasmin failed to activate EPR-HV3HSA. FXIa-cleavable EPR-HV3HSA reduced the time to occlusion of ferric chloride-treated murine arteries and reduced fibrin deposition in murine endotoxemia; noncleavable mycHV3HSA was without effect. EPR-HV3HSA elicited less blood loss than constitutively active HV3HSA in murine liver laceration or tail transection but extended bleeding time to the same extent. EPR-HV3HSA was partially activated in citrated human or murine plasma to a greater extent than HSACHV3.


          Releasing the N-terminal block to HV3 activity using FXIa was an effective way to limit hirudin’s bleeding side-effects, but plasma instability of the exposed EPR blocking peptide rendered it less useful than previously described plasmin-activatable HSACHV3.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: found
          • Article: not found

          Factor XI antisense oligonucleotide for prevention of venous thrombosis.

          Experimental data indicate that reducing factor XI levels attenuates thrombosis without causing bleeding, but the role of factor XI in the prevention of postoperative venous thrombosis in humans is unknown. FXI-ASO (ISIS 416858) is a second-generation antisense oligonucleotide that specifically reduces factor XI levels. We compared the efficacy and safety of FXI-ASO with those of enoxaparin in patients undergoing total knee arthroplasty.
            • Record: found
            • Abstract: found
            • Article: not found

            High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance.

            Plasma contains thousands of proteins, but a small number of these proteins comprise the majority of protein molecules and mass. We surveyed proteomic studies to identify candidates for high-abundance polypeptide chains. We searched the literature for information on the plasma concentrations of the most abundant components in healthy adults and for the molecular mass of the mature polypeptide chains in plasma. Because proteomic studies usually dissociate proteins into polypeptide chains or detect short peptide segments of proteins, we summarized data on individual peptide chains for proteins containing multiple subunits or polypeptides. We collected data on about 150 of the most abundant polypeptides in plasma. The abundant polypeptides span approximately the top 4 logs of concentration in plasma, from 650 to 0.06 micromol/L on a molar basis or from about 50,000 to 1 mg/L mass abundance. Data on the concentrations of the high-abundance peptide chains in plasma assist in understanding the composition of plasma and potential approaches for clinical laboratory or proteomic analysis of plasma proteins. Development of more extensive databases regarding the plasma concentrations of proteins in health and diseases would promote diagnostic and proteomic advances.
              • Record: found
              • Abstract: found
              • Article: not found

              Refined structure of the hirudin-thrombin complex.

              The structure of a recombinant hirudin (variant 2, Lys47) human alpha-thrombin complex has been refined using restrained least-squares methods to a crystallographic R-factor of 0.173. The hirudin structure consists of an N-terminal domain folded into a globular unit and a long 17-peptide C-terminal in an extended chain conformation. The N-terminal domain binds at the active-site of thrombin where Ile1' to Tyr3' penetrates to the catalytic triad. The alpha-amino group of Ile1' of hirudin makes a hydrogen bond with OG of Ser195 of thrombin, the side-chains of Ile1' and Tyr3' occupy the apolar site, Thr2' is at the entrance to, but does not enter, the S1 specificity site and Ile1' to Tyr3' form a parallel beta-strand with Ser214 to Gly219. The latter interaction is antiparallel in all other serine proteinase-protein inhibitor complexes. The extended C-terminal segment of hirudin, which is abundant in acidic residues, makes many electrostatic interactions with the fibrinogen binding exosite while the last five residues are in a 3(10) helical turn residing in a hydrophobic patch on the thrombin surface. The precision of the complementarity displayed by these two molecules produces numerous interactions, which although independently generally weak, together are responsible for the high degree of affinity and specificity. Although hirudin-thrombin and D-Phe-Pro-Arg-chloromethyl ketone-thrombin differ in conformation in the autolysis loop (Lys145 to Gly150), this is most likely due to different crystal packing interactions and changes in circular dichroism between the two are probably due to the inherent flexibility of the loop. An RGD sequence, which is generally known to be involved in cell surface receptor interactions, occurs in thrombin and is associated with a long solvent channel filled with water molecules leading to the surface from the end of the S1 site. However, the RGD triplet does not appear to be able to interact in concert in a surface binding mode.

                Author and article information

                BMC Biotechnol
                BMC Biotechnol
                BMC Biotechnology
                BioMed Central (London )
                5 April 2018
                5 April 2018
                : 18
                [1 ]ISNI 0000 0004 1936 8227, GRID grid.25073.33, Department of Pathology and Molecular Medicine, , McMaster University, ; 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
                [2 ]ISNI 0000 0001 0285 1288, GRID grid.423370.1, Centre for Innovation, , Canadian Blood Services, ; Hamilton, ON Canada
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

                Funded by: FundRef, Heart and Stroke Foundation of Canada;
                Award ID: G-15-0009117
                Research Article
                Custom metadata
                © The Author(s) 2018


                hemorrhage, hirudin, albumin, thrombin, factor xi, thrombosis


                Comment on this article