56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Polymer–drug conjugate therapeutics: advances, insights and prospects

      , ,
      Nature Reviews Drug Discovery
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polymer-drug conjugates have long been a mainstay of the drug delivery field, with several conjugates successfully translated into clinical practice. The conjugation of therapeutic agents to polymeric carriers, such as polyethylene glycol, offers several advantages, including improved drug solubilization, prolonged circulation, reduced immunogenicity, controlled release and enhanced safety. In this Review, we discuss the rational design, physicochemical characteristics and recent advances in the development of different classes of polymer-drug conjugates, including polymer-protein and polymer-small-molecule drug conjugates, dendrimers, polymer nanoparticles and multifunctional systems. Current obstacles hampering the clinical translation of polymer-drug conjugate therapeutics and future prospects are also presented.

          Related collections

          Most cited references233

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of nanoparticle delivery to tumours

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aptamers as therapeutics

            Key Points Aptamers are single-stranded oligonucleotides that fold into defined architectures and bind to targets such as proteins. In binding proteins they often inhibit protein–protein interactions and thereby may elicit therapeutic effects such as antagonism. Aptamers are discovered using SELEX (systematic evolution of ligands by exponential enrichment), a directed in vitro evolution technique in which large libraries of degenerate oligonucleotides are iteratively and alternately partitioned for target binding. They are then amplified enzymatically until functional sequences are identified by the sequencing of cloned individuals. For most therapeutic purposes, aptamers are truncated to reduce synthesis costs, modified at the sugars and capped at their termini to increase nuclease resistance, and conjugated to polyethylene glycol or another entity to reduce renal filtration rates. The first aptamer approved for a therapeutic application was pegaptanib sodium (Macugen; Pfizer/Eyetech), which was approved in 2004 by the US Food and Drug Administration for macular degeneration. Eight other aptamers are currently undergoing clinical evaluation for various haematology, oncology, ocular and inflammatory indications. Aptamers are ultimately chemically synthesized in a readily scalable process in which specific conjugation points are introduced with defined stereochemistry. Unlike some protein therapeutics, aptamers do not elicit antibodies, and because aptamers generally contain sugars modified at their 2′-positions, Toll-like receptor-mediated innate immune responses are also abrogated. As aptamers are oligonucleotides they can be readily assembled into supramolecular multi-component structures using hybridization. Owing to the fact that binding to appropriate cell-surface targets can lead to internalization, aptamers can also be used to deliver therapeutic cargoes such as small interfering RNA. Supramolecular assemblies of aptamers and delivery agents have already been demonstrated in vivo and may pave the way for further therapeutic strategies with this modality in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The dawning era of polymer therapeutics.

              As we enter the twenty-first century, research at the interface of polymer chemistry and the biomedical sciences has given rise to the first nano-sized (5-100 nm) polymer-based pharmaceuticals, the 'polymer therapeutics'. Polymer therapeutics include rationally designed macromolecular drugs, polymer-drug and polymer-protein conjugates, polymeric micelles containing covalently bound drug, and polyplexes for DNA delivery. The successful clinical application of polymer-protein conjugates, and promising clinical results arising from trials with polymer-anticancer-drug conjugates, bode well for the future design and development of the ever more sophisticated bio-nanotechnologies that are needed to realize the full potential of the post-genomic age.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Drug Discovery
                Nat Rev Drug Discov
                Springer Nature
                1474-1776
                1474-1784
                December 12 2018
                Article
                10.1038/s41573-018-0005-0
                30542076
                757f8f4e-1a85-4e2c-bf8d-1959ab5b15ec
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article