112
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Transcriptome of the Human Pathogen Trypanosoma brucei at Single-Nucleotide Resolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genome of Trypanosoma brucei, the causative agent of African trypanosomiasis, was published five years ago, yet identification of all genes and their transcripts remains to be accomplished. Annotation is challenged by the organization of genes transcribed by RNA polymerase II (Pol II) into long unidirectional gene clusters with no knowledge of how transcription is initiated. Here we report a single-nucleotide resolution genomic map of the T. brucei transcriptome, adding 1,114 new transcripts, including 103 non-coding RNAs, confirming and correcting many of the annotated features and revealing an extensive heterogeneity of 5′ and 3′ ends. Some of the new transcripts encode polypeptides that are either conserved in T. cruzi and Leishmania major or were previously detected in mass spectrometry analyses. High-throughput RNA sequencing (RNA-Seq) was sensitive enough to detect transcripts at putative Pol II transcription initiation sites. Our results, as well as recent data from the literature, indicate that transcription initiation is not solely restricted to regions at the beginning of gene clusters, but may occur at internal sites. We also provide evidence that transcription at all putative initiation sites in T. brucei is bidirectional, a recently recognized fundamental property of eukaryotic promoters. Our results have implications for gene expression patterns in other important human pathogens with similar genome organization ( Trypanosoma cruzi, Leishmania sp.) and revealed heterogeneity in pre-mRNA processing that could potentially contribute to the survival and success of the parasite population in the insect vector and the mammalian host.

          Author Summary

          Identifying genes essential for survival in the host is fundamental to unraveling the biology of human pathogens and understanding mechanisms of pathogenesis. The protozoan parasite Trypanosoma brucei causes devastating diseases in humans and animals in sub-Saharan Africa, and the publication in 2005 of the genome sequence provided the first glance at the coding potential of this organism. Although at present there is a catalogue of predicted protein coding genes, the challenge remains to identify all authentic genes, including their boundaries. We used next generation RNA sequencing (RNA-Seq) to map transcribed regions and RNA polymerase II transcription initiation sites on a genome-wide scale. This approach allowed us to improve and correct the current annotation, to reveal a widespread heterogeneity of RNA processing sites ( trans-splicing and polyadenylation) and to estimate that most genes are expressed at levels corresponding to 1 to 10 mRNAs per cell. Our data indicate that different transcript forms representing the same gene are present stochastically within the mRNA population. This unanticipated scenario may contribute to determining gene expression landscapes to adapt to different environments in the parasite life cycle.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional landscape of the yeast genome defined by RNA sequencing.

          The identification of untranslated regions, introns, and coding regions within an organism remains challenging. We developed a quantitative sequencing-based method called RNA-Seq for mapping transcribed regions, in which complementary DNA fragments are subjected to high-throughput sequencing and mapped to the genome. We applied RNA-Seq to generate a high-resolution transcriptome map of the yeast genome and demonstrated that most (74.5%) of the nonrepetitive sequence of the yeast genome is transcribed. We confirmed many known and predicted introns and demonstrated that others are not actively used. Alternative initiation codons and upstream open reading frames also were identified for many yeast genes. We also found unexpected 3'-end heterogeneity and the presence of many overlapping genes. These results indicate that the yeast transcriptome is more complex than previously appreciated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stochasticity in gene expression: from theories to phenotypes.

            Genetically identical cells exposed to the same environmental conditions can show significant variation in molecular content and marked differences in phenotypic characteristics. This variability is linked to stochasticity in gene expression, which is generally viewed as having detrimental effects on cellular function with potential implications for disease. However, stochasticity in gene expression can also be advantageous. It can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome sequence of the nematode C. elegans: a platform for investigating biology.

              (1999)
              The 97-megabase genomic sequence of the nematode Caenorhabditis elegans reveals over 19,000 genes. More than 40 percent of the predicted protein products find significant matches in other organisms. There is a variety of repeated sequences, both local and dispersed. The distinctive distribution of some repeats and highly conserved genes provides evidence for a regional organization of the chromosomes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2010
                September 2010
                9 September 2010
                : 6
                : 9
                : e1001090
                Affiliations
                [1 ]School of Public Health, Yale University, New Haven, Connecticut, United States of America
                [2 ]Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut, United States of America
                [3 ]The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
                [4 ]Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, United States of America
                Washington University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: NGK JBF CT. Performed the experiments: NGK JBF HS. Analyzed the data: NGK JBF SC HS SM CT. Wrote the paper: NGK JBF CT.

                Article
                10-PLPA-RA-3221R2
                10.1371/journal.ppat.1001090
                2936537
                20838601
                758ed3db-9e4a-4262-9018-de5906281a29
                Kolev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 April 2010
                : 6 August 2010
                Page count
                Pages: 15
                Categories
                Research Article
                Genetics and Genomics
                Genetics and Genomics/Gene Expression
                Infectious Diseases/Neglected Tropical Diseases
                Molecular Biology/Bioinformatics

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article