75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteomic Analysis Provides New Insights in Phosphorus Homeostasis Subjected to Pi (Inorganic Phosphate) Starvation in Tomato Plants ( Solanum lycopersicum L.)

      research-article
      1 , 1 , 2 , 3 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phosphorus is a major nutrient acquired by plants via high-affinity inorganic phosphate (Pi) transporters. To determine the adaptation and homeostasis strategy to Pi starvation, we compared the proteome analysis of tomato leaves that were treated with and without Pi (as KH 2PO 4) for 10 days. Among 600 reproducible proteins on 2-DE gels 46 of them were differentially expressed. These proteins were involved in major metabolic pathways, including photosynthesis, transcriptional/translational regulations, carbohydrate/energy metabolism, protein synthesis, defense response, and other secondary metabolism. The results also showed that the reduction in photosynthetic pigments lowered P content under –Pi treatments. Furthermore, high-affinity Pi transporters ( lePT1 and lePT2) expressed in higher amounts under –Pi treatments. Also, the accumulation of Pi transporters was observed highly in the epidermis and palisade parenchyma under +Pi treatments compared to –Pi treatments. Our data suggested that tomato plants developed reactive oxygen species (ROS) scavenging mechanisms to cope with low Pi content, including the up-regulation of proteins mostly involved in important metabolic pathways. Moreover, Pi-starved tomato plants increased their internal Pi utilization efficiency by increasing the Pi transporter genes and their rational localization. These results thus provide imperative information about how tomato plants respond to Pi starvation and its homeostasis.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.

          D ARNON (1949)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Opportunities for improving phosphorus-use efficiency in crop plants.

            Limitation of grain crop productivity by phosphorus (P) is widespread and will probably increase in the future. Enhanced P efficiency can be achieved by improved uptake of phosphate from soil (P-acquisition efficiency) and by improved productivity per unit P taken up (P-use efficiency). This review focuses on improved P-use efficiency, which can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts. Significant decreases in plant P pools may be possible, for example, through reductions of superfluous ribosomal RNA and replacement of phospholipids by sulfolipids and galactolipids. Improvements in P distribution within the plant may be possible by increased remobilization from tissues that no longer need it (e.g. senescing leaves) and reduced partitioning of P to developing grains. Such changes would prolong and enhance the productive use of P in photosynthesis and have nutritional and environmental benefits. Research considering physiological, metabolic, molecular biological, genetic and phylogenetic aspects of P-use efficiency is urgently needed to allow significant progress to be made in our understanding of this complex trait. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation.

              Phosphorus, one of the essential elements for plants, is often a limiting nutrient because of its low availability and mobility in soils. Significant changes in plant morphology and biochemical processes are associated with phosphate (Pi) deficiency. However, the molecular bases of these responses to Pi deficiency are not thoroughly elucidated. Therefore, a comprehensive survey of global gene expression in response to Pi deprivation was done by using Arabidopsis thaliana whole genome Affymetrix gene chip (ATH1) to quantify the spatio-temporal variations in transcript abundance of 22,810 genes. The analysis revealed a coordinated induction and suppression of 612 and 254 Pi-responsive genes, respectively. The functional classification of some of these genes indicated their involvement in various metabolic pathways, ion transport, signal transduction, transcriptional regulation, and other processes related to growth and development. This study is a detailed analysis of Pi starvation-induced changes in gene expression of the entire genome of Arabidopsis correlated with biochemical processes. The results not only enhance our knowledge about molecular processes associated with Pi deficiency, but also facilitate the identification of key molecular determinants for improving Pi use by crop species.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                29 July 2015
                2015
                : 10
                : 7
                : e0134103
                Affiliations
                [1 ]Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University, Jinju, 660–701, South Korea
                [2 ]Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660–701, South Korea
                [3 ]Research Institute of Life Science, Gyeongsang National University, Jinju, 660–701, South Korea
                Universidade Federal de Vicosa, BRAZIL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SM BRJ. Performed the experiments: SM. Analyzed the data: SM. Contributed reagents/materials/analysis tools: BRJ. Wrote the paper: SM BRJ.

                Article
                PONE-D-15-19956
                10.1371/journal.pone.0134103
                4519287
                26222137
                75998773-518a-479e-b35c-c9ad34a1696c
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 7 May 2015
                : 6 July 2015
                Page count
                Figures: 6, Tables: 1, Pages: 18
                Funding
                This study was supported from the grants of BK21 Plus program (Brain Korea 21), Ministry of Education, South Korea. Authors would like to thank Mr. Prabhakaran Soundarajan, Division of Applied Life Science, Gyeongsang National University, for assistance in section cutting under microtome.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article