70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Animal Models of Cardiovascular Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice.

          Increased plasma concentrations of angiotension II (Ang II) have been implicated in atherogenesis. To examine this relationship directly, we infused Ang II or vehicle for 1 month via osmotic minipumps into mature apoE(-/-) mice. These doses of Ang II did not alter arterial blood pressure, body weight, serum cholesterol concentrations, or distribution of lipoprotein cholesterol. However, Ang II infusions promoted an increased severity of aortic atherosclerotic lesions. These Ang II-induced lesions were predominantly lipid-laden macrophages and lymphocytes; moreover, Ang II promoted a marked increase in the number of macrophages present in the adventitial tissue underlying lesions. Unexpectedly, pronounced abdominal aortic aneurysms were present in apoE(-/-) mice infused with Ang II. Sequential sectioning of aneurysmal abdominal aorta revealed two major characteristics: an intact artery that is surrounded by a large remodeled adventitia, and a medial break with pronounced dilation and more modestly remodeled adventitial tissue. Although no atherosclerotic lesions were visible at the medial break point, the presence of hyperlipidemia was required because infusions of Ang II into apoE(+/+) mice failed to generate aneurysms. These results demonstrate that increased plasma concentrations of Ang II have profound and rapid effects on vascular pathology when combined with hyperlipidemia, in the absence of hemodynamic influences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree.

            Initial description of apolipoprotein (apo) E-deficient transgenic mice demonstrated the development of severe hypercholesterolemia due to probable delayed clearance of large atherogenic particles from the circulation. Examination of these mice demonstrated foam cell accumulation in the aortic root and pulmonary arteries by 10 weeks of age. In the present study, the animals were fed either chow or a high-fat, Western-type diet and examined at ages ranging from 6 to 40 weeks. Gross examination by dissection microscopy revealed a predilection for development of lesions in the aortic root, at the lesser curvature of the aortic arch, the principal branches of the aorta, and in the pulmonary and carotid arteries. Monocyte attachment to endothelial cells was observed by light and electron microscopic examination at 6 weeks, the earliest time point examined. Foam cell lesions developed as early as 8 weeks, and after 15 weeks advanced lesions (fibrous plaques) were observed. The latter consisted of a fibrous cap containing smooth muscle cells surrounded by connective tissue matrix that covered a necrotic core with numerous foamy macrophages. Mice fed the Western-type diet generally had more advanced lesions than those fed a chow diet. The apoE-deficient mouse contains the entire spectrum of lesions observed during atherogenesis and is the first mouse model to develop lesions similar to those in humans. This model should provide numerous opportunities to study the pathogenesis and therapy of atherosclerosis in a small, genetically defined animal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiotensin II blockade and aortic-root dilation in Marfan's syndrome.

              Progressive enlargement of the aortic root, leading to dissection, is the main cause of premature death in patients with Marfan's syndrome. Recent data from mouse models of Marfan's syndrome suggest that aortic-root enlargement is caused by excessive signaling by transforming growth factor beta (TGF-beta) that can be mitigated by treatment with TGF-beta antagonists, including angiotensin II-receptor blockers (ARBs). We evaluated the clinical response to ARBs in pediatric patients with Marfan's syndrome who had severe aortic-root enlargement. We identified 18 pediatric patients with Marfan's syndrome who had been followed during 12 to 47 months of therapy with ARBs after other medical therapy had failed to prevent progressive aortic-root enlargement. The ARB was losartan in 17 patients and irbesartan in 1 patient. We evaluated the efficacy of ARB therapy by comparing the rates of change in aortic-root diameter before and after the initiation of treatment with ARBs. The mean (+/-SD) rate of change in aortic-root diameter decreased significantly from 3.54+/-2.87 mm per year during previous medical therapy to 0.46+/-0.62 mm per year during ARB therapy (P<0.001). The deviation of aortic-root enlargement from normal, as expressed by the rate of change in z scores, was reduced by a mean difference of 1.47 z scores per year (95% confidence interval, 0.70 to 2.24; P<0.001) after the initiation of ARB therapy. The sinotubular junction, which is prone to dilation in Marfan's syndrome as well, also showed a reduced rate of change in diameter during ARB therapy (P<0.05), whereas the distal ascending aorta, which does not normally become dilated in Marfan's syndrome, was not affected by ARB therapy. In a small cohort study, the use of ARB therapy in patients with Marfan's syndrome significantly slowed the rate of progressive aortic-root dilation. These findings require confirmation in a randomized trial. 2008 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2011
                16 February 2011
                : 2011
                : 497841
                Affiliations
                1Department of Epidemiology, Atherothrombosis and Cardiovascular Imaging, Fundacion Centro Nacional Investigaciones Cardiovasculares Carlos III (CNIC), Sinesio Delgado 3, 28029 Madrid, Spain
                2Renal and Vascular Research Laboratory, IIS-Fundacion Jimenez Diaz, Universidad Autonoma, Avda Reyes Catolicos 2, 28040 Madrid, Spain
                Author notes
                *Jesus Egido: jegido@ 123456fjd.es

                Academic Editor: Oreste Gualillo

                Article
                10.1155/2011/497841
                3042667
                21403831
                759f2d5d-4367-4df0-ab1a-cd1c4ad0a6b9
                Copyright © 2011 Carlos Zaragoza et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 October 2010
                : 4 January 2011
                : 17 January 2011
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article