31
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disease-modifying drugs in Alzheimer’s disease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer’s disease (AD) is an age-dependent neurodegenerative disorder and the most common cause of dementia. The early stages of AD are characterized by short-term memory loss. Once the disease progresses, patients experience difficulties in sense of direction, oral communication, calculation, ability to learn, and cognitive thinking. The median duration of the disease is 10 years. The pathology is characterized by deposition of amyloid beta peptide (so-called senile plaques) and tau protein in the form of neurofibrillary tangles. Currently, two classes of drugs are licensed by the European Medicines Agency for the treatment of AD, ie, acetylcholinesterase inhibitors for mild to moderate AD, and memantine, an N-methyl-D-aspartate receptor antagonist, for moderate and severe AD. Treatment with acetylcholinesterase inhibitors or memantine aims at slowing progression and controlling symptoms, whereas drugs under development are intended to modify the pathologic steps leading to AD. Herein, we review the clinical features, pharmacologic properties, and cost-effectiveness of the available acetylcholinesterase inhibitors and memantine, and focus on disease-modifying drugs aiming to interfere with the amyloid beta peptide, including vaccination, passive immunization, and tau deposition.

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The cholinergic hypothesis of geriatric memory dysfunction.

          Biochemical, electrophysiological, and pharmacological evidence supporting a role for cholinergic dysfunction in age-related memory disturbances is critically reviewed. An attempt has been made to identify pseudoissues, resolve certain controversies, and clarify misconceptions that have occurred in the literature. Significant cholinergic dysfunctions occur in the aged and demented central nervous system, relationships between these changes and loss of memory exist, similar memory deficits can be artificially induced by blocking cholinergic mechanisms in young subjects, and under certain tightly controlled conditions reliable memory improvements in aged subjects can be achieved after cholinergic stimulation. Conventional attempts to reduce memory impairments in clinical trials hav not been therapeutically successful, however. Possible explanations for these disappointments are given and directions for future laboratory and clinical studies are suggested.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.

            Amyloid-beta peptide (Abeta) seems to have a central role in the neuropathology of Alzheimer's disease (AD). Familial forms of the disease have been linked to mutations in the amyloid precursor protein (APP) and the presenilin genes. Disease-linked mutations in these genes result in increased production of the 42-amino-acid form of the peptide (Abeta42), which is the predominant form found in the amyloid plaques of Alzheimer's disease. The PDAPP transgenic mouse, which overexpresses mutant human APP (in which the amino acid at position 717 is phenylalanine instead of the normal valine), progressively develops many of the neuropathological hallmarks of Alzheimer's disease in an age- and brain-region-dependent manner. In the present study, transgenic animals were immunized with Abeta42, either before the onset of AD-type neuropathologies (at 6 weeks of age) or at an older age (11 months), when amyloid-beta deposition and several of the subsequent neuropathological changes were well established. We report that immunization of the young animals essentially prevented the development of beta-amyloid-plaque formation, neuritic dystrophy and astrogliosis. Treatment of the older animals also markedly reduced the extent and progression of these AD-like neuropathologies. Our results raise the possibility that immunization with amyloid-beta may be effective in preventing and treating Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study.

              G. WATSON (2005)
              Insulin resistance (impaired insulin action) has been associated with Alzheimer disease (AD) and memory impairment, independent of AD. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists improve insulin sensitivity and regulate in-vitro processing of the amyloid precursor protein (APP). Authors evaluated the effects of the PPAR-gamma agonist rosiglitazone on cognition and plasma levels of the APP derivative beta-amyloid (Abeta) in humans. In a placebo-controlled, double-blind, parallel-group pilot study, 30 subjects with mild AD or amnestic mild cognitive impairment were randomized to a 6-month course of rosiglitazone (4 mg daily; N = 20) or placebo (N = 10). Primary endpoints were cognitive performance and plasma Abeta levels. Relative to the placebo group, subjects receiving rosiglitazone exhibited better delayed recall (at Months 4 and 6) and selective attention (Month 6). At Month 6, plasma Abeta levels were unchanged from baseline for subjects receiving rosiglitazone but declined for subjects receiving placebo, consistent with recent reports that plasma Abeta42 decreases with progression of AD. Findings provide preliminary support that rosiglitazone may offer a novel strategy for the treatment of cognitive decline associated with AD. Future confirmation in a larger study is needed to fully demonstrate rosiglitazone's therapeutic potential.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2013
                06 December 2013
                : 7
                : 1471-1479
                Affiliations
                Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
                Author notes
                Correspondence: Laura Ghezzi, Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F Sforza 35, Milan 20122, Italy, Tel +39 2 5503 3847, Fax +39 2 5503 6580, Email lauraghezzi@ 123456me.com
                Article
                dddt-7-1471
                10.2147/DDDT.S41431
                3862506
                24353405
                75a09711-56c5-4e82-a26a-2a90a1e0044b
                © 2013 Ghezzi et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                acetylcholinesterase inhibitors,treatment,alzheimer’s disease,memantine,disease-modifying drugs,diagnosis

                Comments

                Comment on this article