16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins

          The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers. Integr Environ Assess Manag 2011;7:513–541. © 2011 SETAC
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sources, fate and transport of perfluorocarboxylates.

            This review describes the sources, fate, and transport of perfluorocarboxylates (PFCAs) in the environment, with a specific focus on perfluorooctanoate (PFO). The global historical industry-wide emissions of total PFCAs from direct (manufacture, use, consumer products) and indirect (PFCA impurities and/or precursors) sources were estimated to be 3200-7300 tonnes. It was estimated that the majority (approximately 80%) of PFCAs have been released to the environment from fluoropolymer manufacture and use. Although indirect sources were estimated to be much less importantthan direct sources, there were larger uncertainties associated with the calculations for indirect sources. The physical-chemical properties of PFO (negligible vapor pressure, high solubility in water, and moderate sorption to solids) suggested that PFO would accumulate in surface waters. Estimated mass inventories of PFO in various environmental compartments confirmed that surface waters, especially oceans, contain the majority of PFO. The only environmental sinks for PFO were identified to be sediment burial and transport to the deep oceans, implying a long environmental residence time. Transport pathways for PFCAs in the environment were reviewed, and it was concluded that, in addition to atmospheric transport/degradation of precursors, atmospheric and ocean water transport of the PFCAs themselves could significantly contribute to their long-range transport. It was estimated that 2-12 tonnes/ year of PFO are transported to the Artic by oceanic transport, which is greater than the amount estimated to result from atmospheric transport/degradation of precursors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polyfluoroalkyl Chemicals in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000

              Background Polyfluoroalkyl chemicals (PFCs) have been used since the 1950s in numerous commercial applications. Exposure of the general U.S. population to PFCs is widespread. Since 2002, the manufacturing practices for PFCs in the United States have changed considerably. Objectives We aimed to assess exposure to perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and eight other PFCs in a representative 2003–2004 sample of the general U.S. population ≥ 12 years of age and to determine whether serum concentrations have changed since the 1999–2000 National Health and Nutrition Examination Survey (NHANES). Methods By using automated solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry, we analyzed 2,094 serum samples collected from NHANES 2003–2004 participants. Results We detected PFOS, PFOA, PFHxS, and PFNA in > 98% of the samples. Concentrations differed by race/ethnicity and sex. Geometric mean concentrations were significantly lower (approximately 32% for PFOS, 25% for PFOA, 10% for PFHxS) and higher (100%, PFNA) than the concentrations reported in NHANES 1999–2000 (p < 0.001). Conclusions In the general U.S. population in 2003–2004, PFOS, PFOA, PFHxS, and PFNA serum concentrations were measurable in each demographic population group studied. Geometric mean concentrations of PFOS, PFOA, and PFHxS in 2003–2004 were lower than in 1999–2000. The apparent reductions in concentrations of PFOS, PFOA, and PFHxS most likely are related to discontinuation in 2002 of industrial production by electrochemical fluorination of PFOS and related perfluorooctanesulfonyl fluoride compounds.
                Bookmark

                Author and article information

                Journal
                Environmental Evidence
                Environ Evid
                Springer Nature
                2047-2382
                December 2018
                January 22 2018
                December 2018
                : 7
                : 1
                Article
                10.1186/s13750-017-0114-y
                75a6ef42-8cd4-42ed-9280-70ac67123523
                © 2018
                History

                Comments

                Comment on this article