5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Initialisation of single spin dressed states using shortcuts to adiabaticity

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate the use of shortcuts to adiabaticity protocols for initialisation, readout, and coherent control of dressed states generated by closed-contour, coherent driving of a single spin. Such dressed states have recently been shown to exhibit efficient coherence protection, beyond what their two-level counterparts can offer. Our state transfer protocols yield a transfer fidelity of ~ 99.4(2) % while accelerating the transfer speed by a factor of 2.6 compared to the adiabatic approach. We show bi-directionality of the accelerated state transfer, which we employ for direct dressed state population readout after coherent manipulation in the dressed state manifold. Our results enable direct and efficient access to coherence-protected dressed states of individual spins and thereby offer attractive avenues for applications in quantum information processing or quantum sensing.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Single-Atom Quantum Memory

          The faithful storage of a quantum bit of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must, first, be able to receive and recreate the photonic qubit and, second, store an unknown quantum state of light better than any classical device. These two requirements have so far been met only by ensembles of material particles storing the information in collective excitations. Recent developments, however, have paved the way for a new approach in which the information exchange happens between single quanta of light and matter. This single-particle approach allows one to address the material qubit and thus has fundamental advantages for realistic implementations: First, to combat inevitable losses and finite efficiencies, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is analyzed through full quantum process tomography. The average fidelity is measured to be 93% and low decoherence rates result in storage times exceeding 180\mu s. This makes our system a versatile quantum node with excellent perspectives for optical quantum gates and quantum repeaters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Complete methods set for scalable ion trap quantum information processing

            Large-scale quantum information processors must be able to transport and maintain quantum information, and repeatedly perform logical operations. Here we demonstrate a combination of all the fundamental elements required to perform scalable quantum computing using qubits stored in the internal states of trapped atomic ions. We quantify the repeatability of a multi-qubit operation, observing no loss of performance despite qubit transport over macroscopic distances. Key to these results is the use of different pairs of beryllium ion hyperfine states for robust qubit storage, readout and gates, and simultaneous trapping of magnesium re-cooling ions along with the qubit ions.
              Bookmark

              Author and article information

              Journal
              29 January 2019
              Article
              1901.10488
              75a74341-2e43-49e9-b6f9-bb9a963141ed

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              16 pages, 9 figures. Including supplementary material
              cond-mat.mes-hall quant-ph

              Quantum physics & Field theory,Nanophysics
              Quantum physics & Field theory, Nanophysics

              Comments

              Comment on this article