38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skin Inqjuries Reduce Survival and Modulate Corticosterone, C-Reactive Protein, Complement Component 3, IgM, and Prostaglandin E 2 after Whole-Body Reactor-Produced Mixed Field (n + γ-Photons) Irradiation

      research-article
      1 , 2 , 3 , * , 1
      Oxidative Medicine and Cellular Longevity
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skin injuries such as wounds or burns following whole-body γ-irradiation (radiation combined injury (RCI)) increase mortality more than whole-body γ-irradiation alone. Wound-induced decreases in survival after irradiation are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to systemic bacterial infection. Among these factors, radiation-induced increases in interleukin-6 (IL-6) concentrations in serum were amplified by skin wound trauma. Herein, the IL-6-induced stress proteins including C-reactive protein (CRP), complement 3 (C3), immunoglobulin M (IgM), and prostaglandin E 2 (PGE 2) were evaluated after skin injuries given following a mixed radiation environment that might be found after a nuclear incident. In this report, mice received 3 Gy of reactor-produced mixed field (n + γ-photons) radiations at 0.38 Gy/min followed by nonlethal skin wounding or burning. Both wounds and burns reduced survival and increased CRP, C3, and PGE 2 in serum after radiation. Decreased IgM production along with an early rise in corticosterone followed by a subsequent decrease was noted for each RCI situation. These results suggest that RCI-induced alterations of corticosterone, CRP, C3, IgM, and PGE 2 cause homeostatic imbalance and may contribute to reduced survival. Agents inhibiting these responses may prove to be therapeutic for RCI and improve related survival.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          C-reactive protein: a critical update.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adipokines: molecular links between obesity and atheroslcerosis.

            Atherosclerotic disease remains the leading cause of death in industrialized nations despite major advances in its diagnosis, treatment, and prevention. The increasing epidemic of obesity, insulin resistance, and diabetes will likely add to this burden. Increasingly, it is becoming apparent that adipose tissue is an active endocrine and paracrine organ that releases several bioactive mediators that influence not only body weight homeostasis but also inflammation, coagulation, fibrinolysis, insulin resistance, diabetes, and atherosclerosis. The cellular mechanisms linking obesity and atherosclerosis are complex and have not been fully elucidated. This review summarizes the experimental and clinical evidence on how excess body fat influences cardiovascular health through multiple yet converging pathways. The role of adipose tissue in the development of obesity-linked insulin resistance, metabolic syndrome, and diabetes will be reviewed, including an examination of the molecular links between obesity and atherosclerosis, namely, the effects of fat-derived adipokines. Finally, we will discuss how these new insights may provide us with innovative therapeutic strategies to improve cardiovascular health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity.

              Group B streptococci (GBS) cause sepsis and meningitis in neonates and serious infections in adults with underlying chronic illnesses. Specific antibodies have been shown to be an important factor in protective immunity for neonates, but the role of serum complement is less well defined. To elucidate the function of the complement system in immunity to this pathogen, we have used the approach of gene targeting in embryonic stem cells to generate mice totally deficient in complement component C3. Comparison of C3-deficient mice with mice deficient in complement component C4 demonstrated that the 50% lethal dose for GBS infection was reduced by approximately 50-fold and 25-fold, respectively, compared to control mice. GBS were effectively killed in vitro by human blood leukocytes in the presence of specific antibody and C4-deficient serum but not C3-deficient serum. The defective opsonization by C3-deficient serum in vitro was corroborated by in vivo studies in which passive immunization of pregnant dams with specific antibodies conferred protection from GBS challenge to normal and C4-deficient pups but not C3-deficient pups. These results indicate that the alternative pathway is sufficient to mediate effective opsonophagocytosis and protective immunity to GBS in the presence of specific antibody. In contrast, the increased susceptibility to infection of non-immune mice deficient in either C3 or C4 implies that the classical pathway plays an essential role in host defense against GBS infection in the absence of specific immunity.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OXIMED
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2013
                18 September 2013
                : 2013
                : 821541
                Affiliations
                1Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
                2Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
                3Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
                Author notes

                Academic Editor: Felipe Dal-Pizzol

                Article
                10.1155/2013/821541
                3791621
                24175013
                75aaeaf1-5416-4ae6-bcd3-d902e23b3e50
                Copyright © 2013 J. G. Kiang and G. D. Ledney.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 April 2013
                : 5 August 2013
                : 13 August 2013
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article