9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Consequences of warming on tundra carbon balance determined by reindeer grazing history

      , , , , , ,
      Nature Climate Change
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

            Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date. © 2011 Blackwell Publishing Ltd/CNRS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization.

              Global warming is predicted to be most pronounced at high latitudes, and observational evidence over the past 25 years suggests that this warming is already under way. One-third of the global soil carbon pool is stored in northern latitudes, so there is considerable interest in understanding how the carbon balance of northern ecosystems will respond to climate warming. Observations of controls over plant productivity in tundra and boreal ecosystems have been used to build a conceptual model of response to warming, where warmer soils and increased decomposition of plant litter increase nutrient availability, which, in turn, stimulates plant production and increases ecosystem carbon storage. Here we present the results of a long-term fertilization experiment in Alaskan tundra, in which increased nutrient availability caused a net ecosystem loss of almost 2,000 grams of carbon per square meter over 20 years. We found that annual aboveground plant production doubled during the experiment. Losses of carbon and nitrogen from deep soil layers, however, were substantial and more than offset the increased carbon and nitrogen storage in plant biomass and litter. Our study suggests that projected release of soil nutrients associated with high-latitude warming may further amplify carbon release from soils, causing a net loss of ecosystem carbon and a positive feedback to climate warming.
                Bookmark

                Author and article information

                Journal
                Nature Climate Change
                Nature Climate change
                Springer Nature
                1758-678X
                1758-6798
                March 16 2014
                March 16 2014
                : 4
                : 5
                : 384-388
                Article
                10.1038/nclimate2147
                75abcf95-549c-4d29-a909-83783ed5107f
                © 2014
                History

                Comments

                Comment on this article