102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

          Author Summary

          Viruses that replicate in the host cell cytoplasm have evolved to employ host cell-derived membranes to compartmentalize genome replication and transcription. Specifically for positive-stranded RNA viruses, accumulating knowledge concerning the involvement, rearrangement and requirement of cellular membranes for RNA synthesis specify the establishment of the viral replicase complex at host cell-derived membranes as an evolutionary conserved and essential step in the early phase of the viral life cycle. Here we describe a small compound inhibitor of coronavirus replication that (i) specifically targets this membrane-bound RNA replication step and (ii) has broad antiviral activity against number of diverse coronaviruses including highly pathogenic SARS-CoV and MERS-CoV. Since resistance mutations appear in an integral membrane-spanning component of the coronavirus replicase complex, and since all positive stranded RNA viruses have very similar membrane-spanning or membrane-associated replicase components implicated in anchoring the viral replication complex to host cell-derived membranes, our data suggest that the membrane-bound replication step of the viral life cycle is a novel, vulnerable, and druggable target for antiviral intervention of a wide range of RNA virus infections.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome

            The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. The novel coronavirus might have a role in causing SARS. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel coronavirus associated with severe acute respiratory syndrome.

              A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2014
                29 May 2014
                : 10
                : 5
                : e1004166
                Affiliations
                [1 ]Department of Clinical Virology, University of Gothenburg, Göteborg, Sweden
                [2 ]Institute of Immunobiology, Kantonal Hospital St.Gallen, St.Gallen, Switzerland
                [3 ]Federal Department of Home Affairs, Institute of Virology and Immunology, Berne and Mittelhäusern, Switzerland
                [4 ]Organic Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
                [5 ]Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
                [6 ]Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands
                [7 ]Merck Animal Health, Bioprocess Technology & Support, Boxmeer, The Netherlands
                [8 ]Vetsuisse Faculty, University of Berne, Berne, Switzerland
                Johns Hopkins University - Bloomberg School of Public Health, United States of America
                Author notes

                JK is employed by a commercial company, Merck Animal Health. This does not alter our adherence to all PLOS Pathogens policies on sharing data and materials.

                Conceived and designed the experiments: AL TB CH BA VT ET. Performed the experiments: AL RD EK HRJ JK DM. Analyzed the data: AL BA CH NK ET VT RD EK HRJ DM MAM CD MF. Contributed reagents/materials/analysis tools: NK. Wrote the paper: VT ET RD AL.

                [¤]

                Current address: Avian Viral Diseases Programme, The Pirbright Institute, Compton Laboratory, Compton, United Kingdom

                Article
                PPATHOGENS-D-13-02675
                10.1371/journal.ppat.1004166
                4038610
                24874215
                75b0d284-65c2-4fc2-aa6c-de07a6c7fac7
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 October 2013
                : 21 April 2014
                Page count
                Pages: 15
                Funding
                This work was supported by the Swiss National Science Foundation (VT, RD, EK), the 3R Research Foundation, Switzerland (VT, RD, HRJ), the German Research Foundation (Priority Programme 1596, VT), Swedish grants 71650 and 71690 from the Sahlgrenska University Hospital Läkarutbildningsavtal/ALF, and grant from Mizutani Foundation. AL was supported by grant MN58/07 from the Torsten and Ragnar Söderberg Foundation. CD was supported by the European Union FP7 projects EMPERIE (contract number 223498) and ANTIGONE (contract number 278976), the German Research Foundation (DFG grant DR 772/3-1), as well as the German Ministry of Education and Research (BMBF SARS II, 01KI1005A). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Veterinary Science
                Veterinary Diseases
                Veterinary Virology
                Zoonoses
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases
                Common Cold
                SARS
                Pulmonology
                Respiratory Infections

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article