13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      No Childhood Advantage in the Acquisition of Skill in Using an Artificial Language Rule

      research-article
      1 , * , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A leading notion is that language skill acquisition declines between childhood and adulthood. While several lines of evidence indicate that declarative (“what”, explicit) memory undergoes maturation, it is commonly assumed that procedural (“how-to”, implicit) memory, in children, is well established. The language superiority of children has been ascribed to the childhood reliance on implicit learning. Here we show that when 8-year-olds, 12-year-olds and young adults were provided with an equivalent multi-session training experience in producing and judging an artificial morphological rule (AMR), adults were superior to children of both age groups and the 8-year-olds were the poorest learners in all task parameters including in those that were clearly implicit. The AMR consisted of phonological transformations of verbs expressing a semantic distinction: whether the preceding noun was animate or inanimate. No explicit instruction of the AMR was provided. The 8-year-olds, unlike most adults and 12-year-olds, failed to explicitly uncover the semantic aspect of the AMR and subsequently to generalize it accurately to novel items. However, all participants learned to apply the AMR to repeated items and to generalize its phonological patterns to novel items, attaining accurate and fluent production, and exhibiting key characteristics of procedural memory. Nevertheless, adults showed a clear advantage in learning implicit task aspects, and in their long-term retention. Thus, our findings support the notion of age-dependent maturation in the establishment of declarative but also of procedural memory in a complex language task. In line with recent reports of no childhood advantage in non-linguistic skill learning, we propose that under some learning conditions adults can effectively express their language skill acquisition potential. Altogether, the maturational effects in the acquisition of an implicit AMR do not support a simple notion of a language skill learning advantage in children.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Sleep, memory, and plasticity.

          Although the functions of sleep remain largely unknown, one of the most exciting hypotheses is that sleep contributes importantly to processes of memory and brain plasticity. Over the past decade, a large body of work, spanning most of the neurosciences, has provided a substantive body of evidence supporting this role of sleep in what is becoming known as sleep-dependent memory processing. We review these findings, focusing specifically on the role of sleep in (a) memory encoding, (b) memory consolidation, (c) brain plasticity, and (d) memory reconsolidation; we finish with a summary of the field and its potential future directions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The time course of learning a visual skill.

            Several examples of experience-dependent perceptual improvement (perceptual learning) suggest that plasticity in specific neuronal loci could underlie the learning process. For a basic visual discrimination task (using an optimal stimulus for 'automatic' pre-attentive texture segregation), discrete retinal input-dependent changes within a very early stage in the stream of visual processing were indicated as the locus of a large and consistent learning effect. When do these changes occur? Here we report that except for a fast, rapidly saturating improvement early in the first practice session, performance was very stable within sessions. Indeed, observers showed little or no improvement until up to 8 hours after their last training session (latent phase). But large improvements occurred thereafter. Finally, there was almost no forgetting; what was gained was retained for at least 2-3 years. We conjecture that some types of perceptual experience trigger permanent neural changes in early processing stages of the adult visual system. These may take many hours to become functional.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex.

              Behavioral and neurophysiological studies suggest that skill learning can be mediated by discrete, experience-driven changes within specific neural representations subserving the performance of the trained task. We have shown that a few minutes of daily practice on a sequential finger opposition task induced large, incremental performance gains over a few weeks of training. These gains did not generalize to the contralateral hand nor to a matched sequence of identical component movements, suggesting that a lateralized representation of the learned sequence of movements evolved through practice. This interpretation was supported by functional MRI data showing that a more extensive representation of the trained sequence emerged in primary motor cortex after 3 weeks of training. The imaging data, however, also indicated important changes occurring in primary motor cortex during the initial scanning sessions, which we proposed may reflect the setting up of a task-specific motor processing routine. Here we provide behavioral and functional MRI data on experience-dependent changes induced by a limited amount of repetitions within the first imaging session. We show that this limited training experience can be sufficient to trigger performance gains that require time to become evident. We propose that skilled motor performance is acquired in several stages: "fast" learning, an initial, within-session improvement phase, followed by a period of consolidation of several hours duration, and then "slow" learning, consisting of delayed, incremental gains in performance emerging after continued practice. This time course may reflect basic mechanisms of neuronal plasticity in the adult brain that subserve the acquisition and retention of many different skills.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                27 October 2010
                : 5
                : 10
                : e13648
                Affiliations
                [1 ]Department of Communication Disorders, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
                [2 ]Department of Human Biology, Faculties of Science and Education, Edmond J. Safra Brain Research Center for Learning and Learning Disabilities, University of Haifa, Haifa, Israel
                University of Groningen, Netherlands
                Author notes

                Conceived and designed the experiments: SF AK. Performed the experiments: SF. Analyzed the data: SF AK. Contributed reagents/materials/analysis tools: SF. Wrote the paper: SF AK.

                Article
                09-PONE-RA-12986R1
                10.1371/journal.pone.0013648
                2965096
                21048965
                75b4f9ba-feb4-4848-9db1-be77b09606f8
                Ferman, Karni. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 September 2009
                : 3 August 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Neuroscience/Behavioral Neuroscience
                Neuroscience/Cognitive Neuroscience
                Neuroscience/Experimental Psychology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article