In the numerical study of rough surfaces in contact problem, the flexible body beneath the roughness is commonly assumed as a half-space or a half-plane. The surface displacement on the boundary, the displacement components and state of stress inside the half-space can be determined through the convolution of the traction and the corresponding influence function in a closed-form. The influence function is often represented by the Boussinesq-Cerruti solution and the Flamant solution for three-dimensional elasticity and plane strain/stress, respectively. In this study, we rigorously show that any numerical model using the above mentioned half-space solution is a special form of the boundary element method (BEM). The boundary integral equations (BIEs) in the BEM is simplified to the Flamant solution when the domain is strictly a half-plane for the plane strain/stress condition. Similarly, the BIE is degraded to the Boussinesq-Cerruti solution if the domain is strictly a half-space. Therefore, the numerical models utilizing these closed-form influence functions are the special BEM where the domain is a half-space (or a half-plane). This analytical work sheds some light on how to accurately simulate the non-half-space contact problem using the BEM.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 Unported License (CC BY-NC 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See https://creativecommons.org/licenses/by-nc/4.0/.