137
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cestrum nocturnum Flower Extracts Attenuate Proliferation and Induce Apoptosis in Malignant Cells through Inducing DNA Damage and Inhibiting Topoisomerase II Activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN) has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G 0/G 1 and G 2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis.

          Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro-survival or pro-death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti-cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis-related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment. © 2012 Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measuring oxidative damage to DNA and its repair with the comet assay.

            Single cell gel electrophoresis, or the comet assay, was devised as a sensitive method for detecting DNA strand breaks, at the level of individual cells. A simple modification, incorporating a digestion of DNA with a lesion-specific endonuclease, makes it possible to measure oxidised bases. With the inclusion of formamidopyrimidine DNA glycosylase to recognise oxidised purines, or Nth (endonuclease III) to detect oxidised pyrimidines, the comet assay has been used extensively in human biomonitoring to monitor oxidative stress, usually in peripheral blood mononuclear cells. There is evidence to suggest that the enzymic approach is more accurate than chromatographic methods, when applied to low background levels of base oxidation. However, there are potential problems of over-estimation (because the enzymes are not completely specific) or under-estimation (failure to detect lesions that are close together). Attempts have been made to improve the inter-laboratory reproducibility of the comet assay. In addition to measuring DNA damage, the assay can be used to monitor the cellular or in vitro repair of strand breaks or oxidised bases. It also has applications in assessing the antioxidant status of cells. In its various forms, the comet assay is now an invaluable tool in human biomonitoring and genotoxicity testing. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks

              Type II DNA topoisomerases (topos) catalyse changes in DNA topology by passing one double-stranded DNA segment through another. This reaction is essential to processes such as replication and transcription, but carries with it the inherent danger of permanent double-strand break (DSB) formation. All type II topos hydrolyse ATP during their reactions; however, only DNA gyrase is able to harness the free energy of hydrolysis to drive DNA supercoiling, an energetically unfavourable process. A long-standing puzzle has been to understand why the majority of type II enzymes consume ATP to support reactions that do not require a net energy input. While certain type II topos are known to ‘simplify’ distributions of DNA topoisomers below thermodynamic equilibrium levels, the energy required for this process is very low, suggesting that this behaviour is not the principal reason for ATP hydrolysis. Instead, we propose that the energy of ATP hydrolysis is needed to control the separation of protein–protein interfaces and prevent the accidental formation of potentially mutagenic or cytotoxic DSBs. This interpretation has parallels with the actions of a variety of molecular machines that catalyse the conformational rearrangement of biological macromolecules.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2017
                31 January 2017
                : 2017
                : 1456786
                Affiliations
                1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
                2Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
                3Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530200, China
                4Department of Science and Technology, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530200, China
                Author notes
                *Zhen-Guo Zhong: gxtcmuzzg@ 123456163.com

                Academic Editor: Ciara Hughes

                Author information
                http://orcid.org/0000-0002-1370-2381
                http://orcid.org/0000-0001-9598-2462
                Article
                10.1155/2017/1456786
                5307125
                75ddf8c3-6789-4dda-8421-50e6a59b82a0
                Copyright © 2017 Deng-Pan Wu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 October 2016
                : 20 December 2016
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81460598
                Award ID: 81402946
                Funded by: Initializing Fund of Xuzhou Medical University
                Award ID: D2014017
                Award ID: D2014010
                Funded by: the Natural Science Research grant of Higher Education of Jiangsu Province
                Award ID: 14KJD310002
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article