4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Why mountains matter for biodiversity

      1 , 2 , 3 , 1 , 2 , 4
      Journal of Biogeography
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Tracing the impact of the Andean uplift on Neotropical plant evolution.

          Recent phylogenetic studies have revealed the major role played by the uplift of the Andes in the extraordinary diversification of the Neotropical flora. These studies, however, have typically considered the Andean uplift as a single, time-limited event fostering the evolution of highland elements. This contrasts with geological reconstructions indicating that the uplift occurred in discrete periods from west to east and that it affected different regions at different times. We introduce an approach for integrating Andean tectonics with biogeographic reconstructions of Neotropical plants, using the coffee family (Rubiaceae) as a model group. The distribution of this family spans highland and montane habitats as well as tropical lowlands of Central and South America, thus offering a unique opportunity to study the influence of the Andean uplift on the entire Neotropical flora. Our results suggest that the Rubiaceae originated in the Paleotropics and used the boreotropical connection to reach South America. The biogeographic patterns found corroborate the existence of a long-lasting dispersal barrier between the Northern and Central Andes, the "Western Andean Portal." The uplift of the Eastern Cordillera ended this barrier, allowing dispersal of boreotropical lineages to the South, but gave rise to a huge wetland system ("Lake Pebas") in western Amazonia that prevented in situ speciation and floristic dispersal between the Andes and Amazonia for at least 6 million years. Here, we provide evidence of these events in plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rise of the Andes.

            The surface uplift of mountain belts is generally assumed to reflect progressive shortening and crustal thickening, leading to their gradual rise. Recent studies of the Andes indicate that their elevation remained relatively stable for long periods (tens of millions of years), separated by rapid (1 to 4 million years) changes of 1.5 kilometers or more. Periodic punctuated surface uplift of mountain belts probably reflects the rapid removal of unstable, dense lower lithosphere after long-term thickening of the crust and lithospheric mantle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The drivers of tropical speciation.

              Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.
                Bookmark

                Author and article information

                Journal
                Journal of Biogeography
                J Biogeogr
                Wiley
                0305-0270
                1365-2699
                November 11 2019
                November 11 2019
                Affiliations
                [1 ]Gothenburg Global Biodiversity Centre Göteborg Sweden
                [2 ]Department of Biological and Environmental Sciences University of Gothenburg Göteborg Sweden
                [3 ]Institute for Biodiversity and Ecosystem Dynamics (IBED) University of Amsterdam Amsterdam The Netherlands
                [4 ]Royal Botanical Gardens Kew Richmond UK
                Article
                10.1111/jbi.13731
                75dfe4cb-fcd9-46a2-9926-e83298f024c8
                © 2019

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1


                Comments

                Comment on this article