5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer's disease☆

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The cholinergic system in aging and neuronal degeneration.

          The basal forebrain cholinergic complex comprising medial septum, horizontal and vertical diagonal band of Broca, and nucleus basalis of Meynert provides the mayor cholinergic projections to the cerebral cortex and hippocampus. The cholinergic neurons of this complex have been assumed to undergo moderate degenerative changes during aging, resulting in cholinergic hypofunction that has been related to the progressing memory deficits with aging. However, the previous view of significant cholinergic cell loss during aging has been challenged. Neuronal cell loss was found predominantly in pathological aging, such as Alzheimer's disease, while normal aging is accompanied by a gradual loss of cholinergic function caused by dendritic, synaptic, and axonal degeneration as well as a decrease in trophic support. As a consequence, decrements in gene expression, impairments in intracellular signaling, and cytoskeletal transport may mediate cholinergic cell atrophy finally leading to the known age-related functional decline in the brain including aging-associated cognitive impairments. However, in pathological situations associated with cognitive deficits, such as Parkinsons's disease, Down-syndrome, progressive supranuclear palsy, Jakob-Creutzfeld disease, Korsakoff's syndrome, traumatic brain injury, significant degenerations of basal forebrain cholinergic cells have been observed. In presenile (early onset), and in the advanced stages of late-onset Alzheimer's disease (AD), a severe loss of cortical cholinergic innervation has extensively been documented. In contrast, in patients with mild cognitive impairment (MCI, a prodromal stage of AD), and early forms of AD, apparently no cholinergic neurodegeneration but a loss of cholinergic function occurs. In particular imbalances in the expression of NGF, its precursor proNGF, the high and low NGF receptors, trkA and p75NTR, respectively, changes in acetylcholine release, high-affinity choline uptake, as well as alterations in muscarinic and nicotinic acetylcholine receptor expression may contribute to the cholinergic dysfunction. These observations support the suggestion of a key role of the cholinergic system in the functional processes that lead to AD. Malfunction of the cholinergic system may be tackled pharmacologically by intervening in cholinergic as well as neurotrophic signaling cascades that have been shown to ameliorate the cholinergic deficit at early stages of the disease, and slow-down the progression. However, in contrast to many other, dementing disorders, in AD the cholinergic dysfunctions are accompanied by the occurrence of two major histopathological hallmarks such as β-amyloid plaques and neurofibrillary tangles, provoking the question whether they play a particular role in inducing or mediating cholinergic dysfunction in AD. Indeed, there is abundant evidence that β-amyloid may trigger cholinergic dysfunction through action on α7 nicotinic acetylcholine receptors, affecting NGF signaling, mediating tau phosphorylation, interacting with acetylcholinesterase, and specifically affecting the proteome in cholinergic neurons. Therefore, an early onset of an anti β-amyloid strategy may additionally be potential in preventing aging-associated cholinergic deficits and cognitive impairments. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease.

            Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that regulates diverse developmental events from the selection of neural progenitors to the terminal dendritic differentiation and connectivity of neurons. We focus here on activity-dependent synaptic regulation by BDNF and its receptor, full length TrkB. BDNF-TrkB signaling is involved in transcription, translation, and trafficking of proteins during various phases of synaptic development and has been implicated in several forms of synaptic plasticity. These functions are carried out by a combination of the three signaling cascades triggered when BDNF binds TrkB: The mitogen-activated protein kinase (MAPK), the phospholipase Cgamma (PLC PLCgamma), and the phosphatidylinositol 3-kinase (PI3K) pathways. MAPK and PI3K play crucial roles in both translation and/or trafficking of proteins induced by synaptic activity, whereas PLCgamma regulates intracellular Ca(2+) that can drive transcription via cyclic AMP and a protein kinase C. Conversely, the abnormal regulation of BDNF is implicated in various developmental and neurodegenerative diseases that perturb neural development and function. We will discuss the current state of understanding BDNF signaling in the context of synaptic development and plasticity with a focus on the postsynaptic cell and close with the evidence that basic mechanisms of BDNF function still need to be understood to effectively treat genetic disruptions of these pathways that cause devastating neurodevelopmental diseases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Ministry of Science and Technology the People's Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30

              (2024)
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regeneration Research
                Medknow Publications & Media Pvt Ltd (India )
                1673-5374
                1876-7958
                05 February 2012
                : 7
                : 4
                : 245-250
                Affiliations
                [1 ] Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
                [2 ] Research Center for Bioengineering Technology, Hebei University, Baoding 071000, Hebei Province, China
                [3 ] College of Life Science, Hebei University, Baoding 071000, Hebei Province, China
                Author notes
                [☆]

                Ping Zhang, Doctor, Chief physician, Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China

                Corresponding author: Ping Zhang, Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China zhangpingbd@ 123456sina.com (N20110517002/WJ)

                Author contributions: Ping Zhang was in charge of funding, conceived and designed this study, conducted the experiments, wrote the manuscript and analyzed the data. All authors participated in data integration and data analysis.

                Article
                NRR-7-245
                10.3969/j.issn.1673-5374.2012.04.001
                4353094
                25806063
                75ed0474-173e-460c-a858-ebcb54143bb0
                Copyright: © Neural Regeneration Research

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 September 2011
                : 22 December 2011
                Categories
                Research and Report: Stem Cells and Neural Regeneration

                alzheimer's disease,bone marrow-derived mesenchymal stem cells,brain-derived neurotrophic factor,lateral ventricle,electrotransfection,neural regeneration

                Comments

                Comment on this article