Blog
About

18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolic regulation has been recognized as a powerful principle guiding immune responses. Inflammatory macrophages undergo extensive metabolic rewiring 1 marked by the production of substantial amounts of itaconate, which has recently been described as an immunoregulatory metabolite 2 . Itaconate and its membrane-permeable derivative dimethyl itaconate (DI) selectively inhibit a subset of cytokines 2 , including IL-6 and IL-12 but not TNF. The major effects of itaconate on cellular metabolism during macrophage activation have been attributed to the inhibition of succinate dehydrogenase2,3, yet this inhibition alone is not sufficient to account for the pronounced immunoregulatory effects observed in the case of DI. Furthermore, the regulatory pathway responsible for such selective effects of itaconate and DI on the inflammatory program has not been defined. Here we show that itaconate and DI induce electrophilic stress, react with glutathione and subsequently induce both Nrf2 (also known as NFE2L2)-dependent and -independent responses. We find that electrophilic stress can selectively regulate secondary, but not primary, transcriptional responses to toll-like receptor stimulation via inhibition of IκBζ protein induction. The regulation of IκBζ is independent of Nrf2, and we identify ATF3 as its key mediator. The inhibitory effect is conserved across species and cell types, and the in vivo administration of DI can ameliorate IL-17-IκBζ-driven skin pathology in a mouse model of psoriasis, highlighting the therapeutic potential of this regulatory pathway. Our results demonstrate that targeting the DI-IκBζ regulatory axis could be an important new strategy for the treatment of IL-17-IκBζ-mediated autoimmune diseases.

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: found
          • Article: not found

          Heme oxygenase-1: unleashing the protective properties of heme.

          Heme oxygenase (HO)-1 catabolizes heme into three products: carbon monoxide (CO), biliverdin (which is rapidly converted to bilirubin) and free iron (which leads to the induction of ferritin, an iron-binding protein). HO-1 serves as a "protective" gene by virtue of the anti-inflammatory, anti-apoptotic and anti-proliferative actions of one or more of these three products. Administration of CO, biliverdin, bilirubin or iron-binding compounds is protective in rodent disease models of ischemia-reperfusion injury, allograft and xenograft survival, intimal hyperplasia following balloon injury or as seen in chronic graft rejection and others. We suggest that the products of HO-1 action could be valuable therapeutic agents and speculate that HO-1 functions as a "therapeutic funnel", mediating the beneficial effects attributed to other molecules, such as interleukin-10 (IL-10), inducible nitric oxide synthase (NOS2; iNOS) and prostaglandins. This Review is the third in a series on the regulation of the immune system by metabolic pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer.

            We present a liquid chromatography-mass spectrometry (LC-MS) method that capitalizes on the mass-resolving power of the orbitrap to enable sensitive and specific measurement of known and unanticipated metabolites in parallel, with a focus on water-soluble species involved in core metabolism. The reversed phase LC method, with a cycle time 25 min, involves a water-methanol gradient on a C18 column with tributylamine as the ion pairing agent. The MS portion involves full scans from 85 to 1000 m/z at 1 Hz and 100,000 resolution in negative ion mode on a stand alone orbitrap ("Exactive"). The median limit of detection, across 80 metabolite standards, was 5 ng/mL with the linear range typically >or=100-fold. For both standards and a cellular extract from Saccharomyces cerevisiae (Baker's yeast), the median inter-run relative standard deviation in peak intensity was 8%. In yeast exact, we detected 137 known compounds, whose (13)C-labeling patterns could also be tracked to probe metabolic flux. In yeast engineered to lack a gene of unknown function (YKL215C), we observed accumulation of an ion of m/z 128.0351, which we subsequently confirmed to be oxoproline, resulting in annotation of YKL215C as an oxoprolinase. These examples demonstrate the suitability of the present method for quantitative metabolomics, fluxomics, and discovery metabolite profiling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling.

              The tricarboxylic acid cycle enzyme fumarate hydratase (FH) has been identified as a tumor suppressor in a subset of human renal cell carcinomas. Human FH-deficient cancer cells display high fumarate concentration and ROS levels along with activation of HIF-1. The underlying mechanisms by which FH loss increases ROS and HIF-1 are not fully understood. Here, we report that glutamine-dependent oxidative citric acid cycle metabolism is required to generate fumarate and increase ROS and HIF-1 levels. Accumulated fumarate directly bonds the antioxidant glutathione in vitro and in vivo to produce the metabolite succinated glutathione (GSF). GSF acts as an alternative substrate to glutathione reductase to decrease NADPH levels and enhance mitochondrial ROS and HIF-1 activation. Increased ROS also correlates with hypermethylation of histones in these cells. Thus, fumarate serves as a proto-oncometabolite by binding to glutathione which results in the accumulation of ROS. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                April 18 2018
                Article
                10.1038/s41586-018-0052-z
                6037913
                29670287
                © 2018

                http://www.springer.com/tdm

                Comments

                Comment on this article