17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Roles of Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 in Cancer and Cancer Stem Cells

      review-article
      1 , 2 , , 1 ,
      Stem Cells International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA-binding proteins (RBPs) mediate the localization, stability, and translation of the target transcripts and fine-tune the physiological functions of the proteins encoded. The insulin-like growth factor (IGF) 2 mRNA-binding protein (IGF2BP, IMP) family comprises three RBPs, IGF2BP1, IGF2BP2, and IGF2BP3, capable of associating with IGF2 and other transcripts and mediating their processing. IGF2BP2 represents the least understood member of this family of RBPs; however, it has been reported to participate in a wide range of physiological processes, such as embryonic development, neuronal differentiation, and metabolism. Its dysregulation is associated with insulin resistance, diabetes, and carcinogenesis and may potentially be a powerful biomarker and candidate target for relevant diseases. This review summarizes the structural features, regulation, and functions of IGF2BP2 and their association with cancer and cancer stem cells.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review.

          Cancer survivors often seek information about how lifestyle factors, such as physical activity, may influence their prognosis. We systematically reviewed studies that examined relationships between physical activity and mortality (cancer-specific and all-cause) and/or cancer biomarkers. We identified 45 articles published from January 1950 to August 2011 through MEDLINE database searches that were related to physical activity, cancer survival, and biomarkers potentially relevant to cancer survival. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement to guide this review. Study characteristics, mortality outcomes, and biomarker-relevant and subgroup results were abstracted for each article that met the inclusion criteria (ie, research articles that included participants with a cancer diagnosis, mortality outcomes, and an assessment of physical activity). There was consistent evidence from 27 observational studies that physical activity is associated with reduced all-cause, breast cancer-specific, and colon cancer-specific mortality. There is currently insufficient evidence regarding the association between physical activity and mortality for survivors of other cancers. Randomized controlled trials of exercise that included biomarker endpoints suggest that exercise may result in beneficial changes in the circulating level of insulin, insulin-related pathways, inflammation, and, possibly, immunity; however, the evidence is still preliminary. Future research directions identified include the need for more observational studies on additional types of cancer with larger sample sizes; the need to examine whether the association between physical activity and mortality varies by tumor, clinical, or risk factor characteristics; and the need for research on the biological mechanisms involved in the association between physical activity and survival after a cancer diagnosis. Future randomized controlled trials of exercise with biomarker and cancer-specific disease endpoints, such as recurrence, new primary cancers, and cancer-specific mortality in cancer survivors, are warranted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression.

            Stem cells persist throughout life in diverse tissues by undergoing self-renewing divisions. Self-renewal capacity declines with age, partly because of increasing expression of the tumor suppressor p16(Ink4a). We discovered that the Hmga2 transcriptional regulator is highly expressed in fetal neural stem cells but that expression declines with age. This decrease is partly caused by the increasing expression of let-7b microRNA, which is known to target HMGA2. Hmga2-deficient mice show reduced stem cell numbers and self-renewal throughout the central and peripheral nervous systems of fetal and young-adult mice but not old-adult mice. Furthermore, p16(Ink4a) and p19(Arf) expression were increased in Hmga2-deficient fetal and young-adult stem cells, and deletion of p16(Ink4a) and/or p19(Arf) partially restored self-renewal capacity. let-7b overexpression reduced Hmga2 and increased p16(Ink4a)/p19(Arf) expression. Hmga2 thus promotes fetal and young-adult stem cell self-renewal by decreasing p16(Ink4a)/p19(Arf) expression. Changes in let-7 and Hmga2 expression during aging contribute to the decline in neural stem cell function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells.

              Growth of numerous cancer types is believed to be driven by a subpopulation of poorly differentiated cells, often referred to as cancer stem cells (CSCs), that have the capacity for self-renewal, tumor initiation, and generation of nontumorigenic progeny. Despite their potentially key role in tumor establishment and maintenance, the energy requirements of these cells and the mechanisms that regulate their energy production are unknown. Here, we show that the oncofetal insulin-like growth factor 2 mRNA-binding protein 2 (IMP2, IGF2BP2) regulates oxidative phosphorylation (OXPHOS) in primary glioblastoma (GBM) sphere cultures (gliomaspheres), an established in vitro model for CSC expansion. We demonstrate that IMP2 binds several mRNAs that encode mitochondrial respiratory chain complex subunits and that it interacts with complex I (NADH:ubiquinone oxidoreductase) proteins. Depletion of IMP2 in gliomaspheres decreases their oxygen consumption rate and both complex I and complex IV activity that results in impaired clonogenicity in vitro and tumorigenicity in vivo. Importantly, inhibition of OXPHOS but not of glycolysis abolishes GBM cell clonogenicity. Our observations suggest that gliomaspheres depend on OXPHOS for their energy production and survival and that IMP2 expression provides a key mechanism to ensure OXPHOS maintenance by delivering respiratory chain subunit-encoding mRNAs to mitochondria and contributing to complex I and complex IV assembly.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi
                1687-966X
                1687-9678
                2018
                15 March 2018
                : 2018
                : 4217259
                Affiliations
                1Department of Neurosurgery, The First Hospital of Jilin University, Xinmin St. No. 71, Changchun, China
                2Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
                Author notes

                Academic Editor: Po-Yuan Tung

                Author information
                http://orcid.org/0000-0002-2254-8152
                http://orcid.org/0000-0001-7578-5381
                http://orcid.org/0000-0003-1082-2692
                Article
                10.1155/2018/4217259
                5874980
                29736175
                75f5310a-856b-4174-b9e8-57cc39b9acef
                Copyright © 2018 Junguo Cao et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 September 2017
                : 12 December 2017
                : 4 January 2018
                Funding
                Funded by: S&T Development Planning Program of Jilin Province
                Award ID: 20150312005ZG
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article