30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-quality draft genome sequence of Gracilimonas tropica CL-CB462 T (DSM 19535 T), isolated from a Synechococcus culture

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gracilimonas tropica Choi et al. 2009 is a member of order Sphingobacteriales, class Sphingobacteriia. Three species of the genus Gracilimonas have been isolated from marine seawater or a salt mine and showed extremely halotolerant and mesophilic features, although close relatives are extremely halophilic or thermophilic. The type strain of the type species of Gracilimonas, G. tropica DSM19535 T, was isolated from a Synechococcus culture which was established from the tropical sea-surface water of the Pacific Ocean. The genome of the strain DSM19535 T was sequenced through the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes project. Here, we describe the genomic features of the strain. The 3,831,242 bp long draft genome consists of 48 contigs with 3373 protein-coding and 53 RNA genes. The strain seems to adapt to phosphate limitation and requires amino acids from external environment. In addition, genomic analyses and pasteurization experiment suggested that G. tropica DSM19535 T did not form spore.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

            Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The minimum information about a genome sequence (MIGS) specification.

              With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.
                Bookmark

                Author and article information

                Contributors
                bccho@snu.ac.kr
                Journal
                Stand Genomic Sci
                Stand Genomic Sci
                Standards in Genomic Sciences
                BioMed Central (London )
                1944-3277
                11 November 2015
                11 November 2015
                2015
                : 10
                : 98
                Affiliations
                [ ]Biological Oceanography & Marine Biology Division, Korea Institute of Ocean Science and Technology, Ansan, 426-744 Republic of Korea
                [ ]Microbial Oceanography Laboratory, School of Earth and Environmental Sciences, and Research Institute of Oceanography, Seoul National University, Gwanak-ro, Gwanak-gu Seoul, 151-742 Republic of Korea
                [ ]Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
                [ ]Algorithmic Biology Lab, St. Petersburg Academic University, St. Petersburg, Russia
                [ ]Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
                [ ]Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
                [ ]Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
                [ ]Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
                [ ]School of Biology, Newcastle University, Newcastle upon Tyne, UK
                [ ]Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
                Article
                88
                10.1186/s40793-015-0088-8
                4642740
                75f7d06e-2727-4bd8-b736-638be9204efa
                © Choi et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 September 2014
                : 23 October 2015
                Categories
                Short Genome Report
                Custom metadata
                © The Author(s) 2015

                Genetics
                genome,gracilimonas tropica,marine,sphingobacteriia,geba
                Genetics
                genome, gracilimonas tropica, marine, sphingobacteriia, geba

                Comments

                Comment on this article