9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      L-Lactate dehydrogenase from Thermus caldophilus GK24, an extremely thermophilic bacterium. Desensitization to fructose 1,6-bisphosphate in the activated state by arginine-specific chemical modification and the N-terminal amino acid sequence.

      , ,
      European journal of biochemistry

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heat-stable and fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) has been purified from an extremely thermophilic bacterium, Thermus caldophilus GK24 [Taguchi, H., Yamashita, M., Matsuzawa, H. and Ohta, T. (1982) J. Biochem. (Tokyo) 91, 1343-1348]. N-terminal sequence analysis of the first 34 amino acids of the enzyme indicates that the N-terminal arm region (first 1-20 residues) known for the vertebrate L-lactate dehydrogenases is completely missing in the T. caldophilus enzyme, while there is a high homology of sequence between the regions which are considered to be part of the NAD-binding domain. The C-terminal amino acid of the enzyme was phenylalanine. Analysis of the amino acid composition showed that T. caldophilus enzyme contained much more arginine and fewer lysine than other bacterial and vertebrate L-lactate dehydrogenases. On modification reaction with 2,3-butanedione in the presence of NADH and oxamate, an enhanced activity of the T. caldophilus L-lactate dehydrogenase was obtained independently of fructose 1,6-bisphosphate, and the modified enzyme was desensitized to fructose 1,6-bisphosphate. Amino acid analysis indicated that such a desensitization in the active state was caused by the modification of only one arginine residue per the enzyme subunit. Desensitization of the enzyme was inhibited in the presence of fructose 1,6-bisphosphate. A similar desensitization was observed using 1,2-cyclohexanedione instead of 2,3-butanedione. The enzyme was irreversibly modified with 2,3-butanedione and characterized. The irreversibly modified enzyme also showed an enhanced activity independently of fructose 1,6-bisphosphate, and its pyruvate saturation curve was similar to that of the native enzyme measured in the presence of fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate, which increases the thermostability of the native enzyme, did not affect that of the modified enzyme, while thermostability of the modified enzyme slightly decreased. Amino acid analysis indicated that only the arginine content was decreased by the modification. These results show that arginine residue(s) exist in the binding site for fructose 1,6-bisphosphate on the enzyme, and that the arginine residue(s) play some important role in the allosteric regulation of the enzyme activity.

          Related collections

          Author and article information

          Journal
          Eur. J. Biochem.
          European journal of biochemistry
          0014-2956
          0014-2956
          Dec 3 1984
          : 145
          : 2
          Article
          6499843
          75fb3023-204c-407d-b615-b02dbc8d23f0
          History

          Comments

          Comment on this article