Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds

      Chemical Papers

      Walter de Gruyter GmbH

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes expressed in the human body under physiological conditions. AChE is an important part of the cholinergic nerves where it hydrolyses neurotransmitter acetylcholine. Both cholinesterases are sensitive to inhibitors acting as neurotoxic compounds. In analytical applications, the enzymes can serve as a biorecognition element in biosensors as well as simple disposable sensors (dipsticks) and be used for assaying the neurotoxic compounds. In the present review, the mechanism of AChE and BChE inhibition by disparate compounds is explained and methods for assaying the enzymes activity are shown. Optical, electrochemical, and piezoelectric biosensors are described. Attention is also given to the application of sol-gel techniques and quantum dots in the biosensors’ construction. Examples of the biosensors are provided and the pros and cons are discussed.

          Related collections

          Most cited references 120

          • Record: found
          • Abstract: found
          • Article: not found

          Biosensors: sense and sensibility.

          This review is based on the Theophilus Redwood Medal and Award lectures, delivered to Royal Society of Chemistry meetings in the UK and Ireland in 2012, and presents a personal overview of the field of biosensors. The biosensors industry is now worth billions of United States dollars, the topic attracts the attention of national initiatives across the world and tens of thousands of papers have been published in the area. This plethora of information is condensed into a concise account of the key achievements to date. The reasons for success are examined, some of the more exciting emerging technologies are highlighted and the author speculates on the importance of biosensors as a ubiquitous technology of the future for health and the maintenance of wellbeing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GDSL family of serine esterases/lipases.

            GDSL esterases and lipases are hydrolytic enzymes with multifunctional properties such as broad substrate specificity and regiospecificity. They have potential for use in the hydrolysis and synthesis of important ester compounds of pharmaceutical, food, biochemical, and biological interests. This new subclass of lipolytic enzymes possesses a distinct GDSL sequence motif different from the GxSxG motif found in many lipases. Unlike the common lipases, GDSL enzymes do not have the so called nucleophile elbow. Studies show that GDSL hydrolases have a flexible active site that appears to change conformation with the presence and binding of the different substrates, much like the induced fit mechanism proposed by Koshland. Some of the GDSL enzymes have thioesterase, protease, arylesterase, and lysophospholipase activity, yet they appear to be the same protein with similar molecular weight ( approximately 22-60 kDa for most esterases), although some have multiple glycosylation sites with higher apparent molecular weight. GDSL enzymes have five consensus sequence (I-V) and four invariant important catalytic residues Ser, Gly, Asn, and His in blocks I, II, III, and V, respectively. The oxyanion structure led to a new designation of these enzymes as SGNH-hydrolase superfamily or subfamily. Phylogenetic analysis revealed that block IIA which belonged to the SGNH-hydrolases was found only in clade I. Therefore, this family of hydrolases represents a new example of convergent evolution of lipolytic enzymes. These enzymes have little sequence homology to true lipases. Another important differentiating feature of GDSL subfamily of lipolytic enzymes is that the serine-containing motif is closer to the N-terminus unlike other lipases where the GxSxG motif is near the center. Since the first classification of these subclass or subfamily of lipases as GDSL(S) hydrolase, progress has been made in determining the consensus sequence, crystal structure, active site and oxyanion residues, secondary structure, mechanism of catalysis, and understanding the conformational changes. Nevertheless, much still needs to be done to gain better understanding of in vivo biological function, 3-D structure, how this group of enzymes evolved to utilize many different substrates, and the mechanism of reactions. Protein engineering is needed to improve the substrate specificity, enantioselectivity, specific activity, thermostability, and heterologous expression in other hosts (especially food grade microorganisms) leading to eventual large scale production and applications. We hope that this review will rekindle interest among researchers and the industry to study and find uses for these unique enzymes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Semiconductor quantum dots for bioimaging and biodiagnostic applications.

              Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
                Bookmark

                Author and article information

                Journal
                Chemical Papers
                Walter de Gruyter GmbH
                1336-9075
                January 1 2015
                January 1 2015
                : 69
                : 1
                Article
                10.2478/s11696-014-0542-x
                © 2015

                Comments

                Comment on this article