24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of Fried Meat-Induced Colorectal DNA Damage and Altered Systemic Genotoxicity in Humans by Crucifera, Chlorophyllin, and Yogurt

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 subjects were randomly assigned to dietary regimens containing meat cooked at either low (100°C) or high temperature (250°C), each for 2 weeks in a crossover design. The other 8 subjects were randomly assigned to dietary regimens containing the high-temperature meat diet alone or in combination with 3 putative mutagen inhibitors: cruciferous vegetables, yogurt, and chlorophyllin tablets, also in a crossover design. Subjects were nonsmokers, at least 18 years old, and not currently taking prescription drugs or antibiotics. We used the Salmonella assay to analyze the meat, urine, and feces for mutagenicity, and the comet assay to analyze rectal biopsies and peripheral blood lymphocytes for DNA damage. Low-temperature meat had undetectable levels of heterocyclic amines (HCAs) and was not mutagenic, whereas high-temperature meat had high HCA levels and was highly mutagenic. The high-temperature meat diet increased the mutagenicity of hydrolyzed urine and feces compared to the low-temperature meat diet. The mutagenicity of hydrolyzed urine was increased nearly twofold by the inhibitor diet, indicating that the inhibitors enhanced conjugation. Inhibitors decreased significantly the mutagenicity of un-hydrolyzed and hydrolyzed feces. The diets did not alter the levels of DNA damage in non-target white blood cells, but the inhibitor diet decreased nearly twofold the DNA damage in target colorectal cells. To our knowledge, this is the first demonstration that dietary factors can reduce DNA damage in the target tissue of fried-meat associated carcinogenesis.

          Trial Registration

          ClinicalTrials.gov NCT00340743.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimating the Dimension of a Model

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meat intake and mortality: a prospective study of over half a million people.

            High intakes of red or processed meat may increase the risk of mortality. Our objective was to determine the relations of red, white, and processed meat intakes to risk for total and cause-specific mortality. The study population included the National Institutes of Health-AARP (formerly known as the American Association of Retired Persons) Diet and Health Study cohort of half a million people aged 50 to 71 years at baseline. Meat intake was estimated from a food frequency questionnaire administered at baseline. Cox proportional hazards regression models estimated hazard ratios (HRs) and 95% confidence intervals (CIs) within quintiles of meat intake. The covariates included in the models were age, education, marital status, family history of cancer (yes/no) (cancer mortality only), race, body mass index, 31-level smoking history, physical activity, energy intake, alcohol intake, vitamin supplement use, fruit consumption, vegetable consumption, and menopausal hormone therapy among women. Main outcome measures included total mortality and deaths due to cancer, cardiovascular disease, injuries and sudden deaths, and all other causes. There were 47 976 male deaths and 23 276 female deaths during 10 years of follow-up. Men and women in the highest vs lowest quintile of red (HR, 1.31 [95% CI, 1.27-1.35], and HR, 1.36 [95% CI, 1.30-1.43], respectively) and processed meat (HR, 1.16 [95% CI, 1.12-1.20], and HR, 1.25 [95% CI, 1.20-1.31], respectively) intakes had elevated risks for overall mortality. Regarding cause-specific mortality, men and women had elevated risks for cancer mortality for red (HR, 1.22 [95% CI, 1.16-1.29], and HR, 1.20 [95% CI, 1.12-1.30], respectively) and processed meat (HR, 1.12 [95% CI, 1.06-1.19], and HR, 1.11 [95% CI 1.04-1.19], respectively) intakes. Furthermore, cardiovascular disease risk was elevated for men and women in the highest quintile of red (HR, 1.27 [95% CI, 1.20-1.35], and HR, 1.50 [95% CI, 1.37-1.65], respectively) and processed meat (HR, 1.09 [95% CI, 1.03-1.15], and HR, 1.38 [95% CI, 1.26-1.51], respectively) intakes. When comparing the highest with the lowest quintile of white meat intake, there was an inverse association for total mortality and cancer mortality, as well as all other deaths for both men and women. Red and processed meat intakes were associated with modest increases in total mortality, cancer mortality, and cardiovascular disease mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revised methods for the Salmonella mutagenicity test.

              The methods for detecting carcinogens and mutagens with the Salmonella mutagenicity test were described previously (Ames et al., 1975b). The present paper is a revision of the methods. Two new tester strains, a frameshift strain (TA97) and a strain carrying an ochre mutation on a multicopy plasmid (TA102), are added to the standard tester set. TA97 replaces TA1537. TA1535 and TA1538 are removed from the recommended set but can be retained at the option of the investigator. TA98 and TA100 are retained. We discuss other special purpose strains and present some minor changes in procedure, principally in the growth, storage, and preservation of the tester strains. Two substitutions are made in diagnostic mutagens to eliminate MNNG and 9-aminoacridine. Some test modifications are discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                25 April 2011
                : 6
                : 4
                : e18707
                Affiliations
                [1 ]Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, United States of America
                [2 ]Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [3 ]Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, United States of America
                [4 ]Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, United States of America
                [5 ]Clinical and Translational Research Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [6 ]Chemistry, Materials, and Life Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
                [7 ]National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
                University of California, Los Angeles, and Cedars-Sinai Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: DS RS JT DD DU. Performed the experiments: DS AS DD PM MK. Analyzed the data: DS JT DU ZX DD. Contributed reagents/materials/analysis tools: DS JT DD MK. Wrote the paper: DS DD JT DU. Study coordinator: BS. Research dietician: BM. Clinical physician on the study: LG.

                Article
                PONE-D-10-02653
                10.1371/journal.pone.0018707
                3081825
                21541030
                76114e4f-d8dc-49ab-82a2-bfc4baaa0a6b
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 25 August 2010
                : 16 March 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Genetics
                Genetic Mutation
                Mutagenesis
                Medicine
                Oncology
                Cancer Risk Factors
                Nutritional Correlates of Cancer
                Cancer Prevention
                Toxicology
                Genetic Toxicology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article