70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Digital cameras with designs inspired by the arthropod eye

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In arthropods, evolution has created a remarkably sophisticated class of imaging systems, with a wide-angle field of view, low aberrations, high acuity to motion and an infinite depth of field. A challenge in building digital cameras with the hemispherical, compound apposition layouts of arthropod eyes is that essential design requirements cannot be met with existing planar sensor technologies or conventional optics. Here we present materials, mechanics and integration schemes that afford scalable pathways to working, arthropod-inspired cameras with nearly full hemispherical shapes (about 160 degrees). Their surfaces are densely populated by imaging elements (artificial ommatidia), which are comparable in number (180) to those of the eyes of fire ants (Solenopsis fugax) and bark beetles (Hylastes nigrinus). The devices combine elastomeric compound optical elements with deformable arrays of thin silicon photodetectors into integrated sheets that can be elastically transformed from the planar geometries in which they are fabricated to hemispherical shapes for integration into apposition cameras. Our imaging results and quantitative ray-tracing-based simulations illustrate key features of operation. These general strategies seem to be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes).

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Visual acuity in insects.

          M F Land (1997)
          The acuity of compound eyes is determined by interommatidial angles, optical quality, and rhabdom dimensions. It is also affected by light levels and speed of movement. In insects, interommatidial angles vary from tens of degrees in Apterygota, to as little as 0.24 degrees in dragonflies. Resolution better than this is not attainable in compound eyes of realistic size. The smaller the interommatidial angle the greater the distance at which objects--prey, predators, or foliage--can be resolved. Insects with different lifestyles have contrasting patterns of interommatidial angle distribution, related to forward flight, capture on the wing, and predation on horizontal surfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biologically inspired artificial compound eyes.

            This work presents the fabrication of biologically inspired artificial compound eyes. The artificial ommatidium, like that of an insect's compound eyes, consists of a refractive polymer microlens, a light-guiding polymer cone, and a self-aligned waveguide to collect light with a small angular acceptance. The ommatidia are omnidirectionally arranged along a hemispherical polymer dome such that they provide a wide field of view similar to that of a natural compound eye. The spherical configuration of the microlenses is accomplished by reconfigurable microtemplating, that is, polymer replication using the deformed elastomer membrane with microlens patterns. The formation of polymer waveguides self-aligned with microlenses is also realized by a self-writing process in a photosensitive polymer resin. The angular acceptance is directly measured by three-dimensional optical sectioning with a confocal microscope, and the detailed optical characteristics are studied in comparison with a natural compound eye.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability.

              Imaging systems that exploit arrays of photodetectors in curvilinear layouts are attractive due to their ability to match the strongly nonplanar image surfaces (i.e., Petzval surfaces) that form with simple lenses, thereby creating new design options. Recent work has yielded significant progress in the realization of such "eyeball" cameras, including examples of fully functional silicon devices capable of collecting realistic images. Although these systems provide advantages compared to those with conventional, planar designs, their fixed detector curvature renders them incompatible with changes in the Petzval surface that accompany variable zoom achieved with simple lenses. This paper describes a class of digital imaging device that overcomes this limitation, through the use of photodetector arrays on thin elastomeric membranes, capable of reversible deformation into hemispherical shapes with radii of curvature that can be adjusted dynamically, via hydraulics. Combining this type of detector with a similarly tunable, fluidic plano-convex lens yields a hemispherical camera with variable zoom and excellent imaging characteristics. Systematic experimental and theoretical studies of the mechanics and optics reveal all underlying principles of operation. This type of technology could be useful for night-vision surveillance, endoscopic imaging, and other areas that require compact cameras with simple zoom optics and wide-angle fields of view.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                May 2013
                May 1 2013
                May 2013
                : 497
                : 7447
                : 95-99
                Article
                10.1038/nature12083
                23636401
                761c38f8-0a10-4fb5-83f7-946c06dec0c3
                © 2013

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article