11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances in nanotechnology for sustainable aquaculture and fisheries

      1 , 1
      Reviews in Aquaculture
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: not found
          • Article: not found

          CXCVI.—Emulsions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dendrimers and dendritic polymers in drug delivery.

            The unique properties of dendrimers, such as their high degree of branching, multivalency, globular architecture and well-defined molecular weight, make them promising new scaffolds for drug delivery. In the past decade, research has increased on the design and synthesis of biocompatible dendrimers and their application to many areas of bioscience including drug delivery, immunology and the development of vaccines, antimicrobials and antivirals. Recent progress has been made in the application of biocompatible dendrimers to cancer treatment, including their use as delivery systems for potent anticancer drugs such as cisplatin and doxorubicin, as well as agents for both boron neutron capture therapy and photodynamic therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein release from alginate matrices.

              W Gombotz (1998)
              There are a variety of both natural and synthetic polymeric systems that have been investigated for the controlled release of proteins. Many of the procedures employed to incorporate proteins into a polymeric matrix can be harsh and often cause denaturation of the active agent. Alginate, a naturally occurring biopolymer extracted from brown algae (kelp), has several unique properties that have enabled it to be used as a matrix for the entrapment and/or delivery of a variety of biological agents. Alginate polymers are a family of linear unbranched polysaccharides which contain varying amounts of 1,4'-linked beta-D-mannuronic acid and alpha-L-guluronic acid residues. The residues may vary widely in composition and sequence and are arranged in a pattern of blocks along the chain. Alginate can be ionically crosslinked by the addition of divalent cations in aqueous solution. The relatively mild gelation process has enabled not only proteins, but cells and DNA to be incorporated into alginate matrices with retention of full biological activity. Furthermore, by selection of the type of alginate and coating agent, the pore size, degradation rate, and ultimately release kinetics can be controlled. Gels of different morphologies can be prepared including large block matrices, large beads (>1 mm in diameter) and microbeads (<0.2 mm in diameter). In situ gelling systems have also been made by the application of alginate to the cornea, or on the surfaces of wounds. Alginate is a bioadhesive polymer which can be advantageous for the site specific delivery to mucosal tissues. All of these properties, in addition to the nonimmunogenicity of alginate, have led to an increased use of this polymer as a protein delivery system. This review will discuss the chemistry of alginate, its gelation mechanisms, and the physical properties of alginate gels. Emphasis will be placed on applications in which biomolecules have been incorporated into and released from alginate systems.
                Bookmark

                Author and article information

                Contributors
                Journal
                Reviews in Aquaculture
                Rev Aquacult
                Wiley
                1753-5123
                1753-5131
                May 2020
                June 12 2019
                May 2020
                : 12
                : 2
                : 925-942
                Affiliations
                [1 ]Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
                Article
                10.1111/raq.12356
                762034af-f805-48d2-9e59-680f38088ae2
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article