+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Focal Contacts as Mechanosensors : Externally Applied Local Mechanical Force Induces Growth of Focal Contacts by an Mdia1-Dependent and Rock-Independent Mechanism

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.

          Related collections

          Most cited references 67

          • Record: found
          • Abstract: found
          • Article: not found

          The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.

          Actin stress fibers are one of the major cytoskeletal structures in fibroblasts and are linked to the plasma membrane at focal adhesions. rho, a ras-related GTP-binding protein, rapidly stimulated stress fiber and focal adhesion formation when microinjected into serum-starved Swiss 3T3 cells. Readdition of serum produced a similar response, detectable within 2 min. This activity was due to a lysophospholipid, most likely lysophosphatidic acid, bound to serum albumin. Other growth factors including PDGF induced actin reorganization initially to form membrane ruffles, and later, after 5 to 10 min, stress fibers. For all growth factors tested the stimulation of focal adhesion and stress fiber assembly was inhibited when endogenous rho function was blocked, whereas membrane ruffling was unaffected. These data imply that rho is essential specifically for the coordinated assembly of focal adhesions and stress fibers induced by growth factors.
            • Record: found
            • Abstract: found
            • Article: not found

            Cell locomotion and focal adhesions are regulated by substrate flexibility.

            Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism.
              • Record: found
              • Abstract: found
              • Article: not found

              Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.

              The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was phosphorylated in N1E-115 neuroblastoma cells during lysophosphatidic acid-induced, Rho-mediated neurite retraction. This phosphorylation was sensitive to Y-27632, a specific inhibitor of the Rho-associated kinase ROCK. ROCK, which is a downstream effector of Rho, did not phosphorylate cofilin directly but phosphorylated LIM-kinase, which in turn was activated to phosphorylate cofilin. Overexpression of LIM-kinase in HeLa cells induced the formation of actin stress fibers in a Y-27632-sensitive manner. These results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylation of cofilin by LIM-kinase contribute to Rho-induced reorganization of the actin cytoskeleton.

                Author and article information

                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                11 June 2001
                : 153
                : 6
                : 1175-1186
                [a ]Laboratory of Physical Spectrometry (CNRS), UMR 5588, Joseph Fourier University, French National Center for Scientific Research, BP87, 38402 Saint-Martin d'Hères Cedex, France
                [b ]Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
                [c ]Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
                [d ]Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
                © 2001 The Rockefeller University Press
                Original Article

                Cell biology

                gfp–vinculin, rho, myosin ii, cell contractility, adhesion-dependent signaling


                Comment on this article