9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prospective experimental treatment of colorectal cancer patients based on organoid drug responses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Organoid technology has recently emerged as a powerful tool to assess drug sensitivity of individual patient tumors in vitro. Organoids may therefore represent a new avenue for precision medicine, as this circumvents many of the complexities associated with DNA- or transcriptional-profiling.

          Materials and methods

          The SENSOR trial was a single-arm, single-center, prospective intervention trial to evaluate the feasibility of patient-derived organoids to allocate patients for treatment with off-label or investigational agents. The primary endpoint was an objective response rate of ≥20%. Patients underwent a biopsy for culture before commencing their last round standard of care. Organoids were exposed to a panel of eight drugs and patients were treated after progression on standard-of-care treatment and when a clear signal of antitumor activity was identified in vitro.

          Results

          Sixty-one patients were included and we generated 31 organoids of 54 eligible patients. Twenty-five cultures were subjected to drug screening and 19 organoids exhibited substantial responses to one or more drugs. Three patients underwent treatment with vistusertib and three with capivasertib. Despite drug sensitivity of organoids, patients did not demonstrate objective clinical responses to the recommended treatment.

          Conclusions

          Organoid technology had limited value as a tool for precision medicine in this patient population because a large fraction of patients could not undergo treatment or because the recommended treatment did not elicit an objective response. We identified several essential parameters, such as the culture success rate, clinical deterioration of patients during standard of care, and rational design of drug panels that need to be accounted for in organoid-guided clinical studies.

          Highlights

          • The first prospective clinical trial that leverages tumor organoids to guide experimental treatment decisions.

          • Clinical implementation of tumor-organoid-guided treatment is challenging.

          • Patients that received organoid-informed treatment did not experience clinical benefit.

          • Organoid drug screening can distinguish differential drug responses in identical genetic genotypes.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).

          Assessment of the change in tumour burden is an important feature of the clinical evaluation of cancer therapeutics: both tumour shrinkage (objective response) and disease progression are useful endpoints in clinical trials. Since RECIST was published in 2000, many investigators, cooperative groups, industry and government authorities have adopted these criteria in the assessment of treatment outcomes. However, a number of questions and issues have arisen which have led to the development of a revised RECIST guideline (version 1.1). Evidence for changes, summarised in separate papers in this special issue, has come from assessment of a large data warehouse (>6500 patients), simulation studies and literature reviews. HIGHLIGHTS OF REVISED RECIST 1.1: Major changes include: Number of lesions to be assessed: based on evidence from numerous trial databases merged into a data warehouse for analysis purposes, the number of lesions required to assess tumour burden for response determination has been reduced from a maximum of 10 to a maximum of five total (and from five to two per organ, maximum). Assessment of pathological lymph nodes is now incorporated: nodes with a short axis of 15 mm are considered measurable and assessable as target lesions. The short axis measurement should be included in the sum of lesions in calculation of tumour response. Nodes that shrink to <10mm short axis are considered normal. Confirmation of response is required for trials with response primary endpoint but is no longer required in randomised studies since the control arm serves as appropriate means of interpretation of data. Disease progression is clarified in several aspects: in addition to the previous definition of progression in target disease of 20% increase in sum, a 5mm absolute increase is now required as well to guard against over calling PD when the total sum is very small. Furthermore, there is guidance offered on what constitutes 'unequivocal progression' of non-measurable/non-target disease, a source of confusion in the original RECIST guideline. Finally, a section on detection of new lesions, including the interpretation of FDG-PET scan assessment is included. Imaging guidance: the revised RECIST includes a new imaging appendix with updated recommendations on the optimal anatomical assessment of lesions. A key question considered by the RECIST Working Group in developing RECIST 1.1 was whether it was appropriate to move from anatomic unidimensional assessment of tumour burden to either volumetric anatomical assessment or to functional assessment with PET or MRI. It was concluded that, at present, there is not sufficient standardisation or evidence to abandon anatomical assessment of tumour burden. The only exception to this is in the use of FDG-PET imaging as an adjunct to determination of progression. As is detailed in the final paper in this special issue, the use of these promising newer approaches requires appropriate clinical validation studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Comprehensive Molecular Characterization of Human Colon and Rectal Cancer

            Summary To characterize somatic alterations in colorectal carcinoma (CRC), we conducted genome-scale analysis of 276 samples, analyzing exome sequence, DNA copy number, promoter methylation, mRNA and microRNA expression. A subset (97) underwent low-depth-of-coverage whole-genome sequencing. 16% of CRC have hypermutation, three quarters of which have the expected high microsatellite instability (MSI), usually with hypermethylation and MLH1 silencing, but one quarter has somatic mismatch repair gene mutations. Excluding hypermutated cancers, colon and rectum cancers have remarkably similar patterns of genomic alteration. Twenty-four genes are significantly mutated. In addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9, and FAM123B/WTX. Recurrent copy number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive CRC and important role for MYC-directed transcriptional activation and repression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

              We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                ESMO Open
                ESMO Open
                ESMO Open
                Elsevier
                2059-7029
                19 April 2021
                June 2021
                19 April 2021
                : 6
                : 3
                : 100103
                Affiliations
                [1 ]Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [2 ]Oncode Institute, Utrecht, The Netherlands
                [3 ]Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [4 ]Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [5 ]Department of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [6 ]Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [7 ]Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [8 ]Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center AMC, Amsterdam, The Netherlands
                [9 ]Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
                [10 ]Department of Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, The Netherlands
                [11 ]Department of Internal Medicine/Oncology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
                [12 ]Division of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
                [13 ]Hartwig Medical Foundation, Amsterdam, The Netherlands
                Author notes
                [] Correspondence to: Prof. Emile E. Voest, Department of Gastrointestinal Oncology and Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. Tel: +31-20-512-6930 E.voest@ 123456nki.nl
                [†]

                These authors contributed equally to this work.

                [‡]

                Shared second authors.

                Article
                S2059-7029(21)00060-0 100103
                10.1016/j.esmoop.2021.100103
                8086019
                33887686
                762535ac-9373-4841-81cf-35a9872daddc
                © 2021 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Original Research

                colorectal cancer,precision medicine,experimental treatment,clinical trial,tumor organoids,drug screening

                Comments

                Comment on this article