3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Naringenin protects against acute pancreatitis-associated intestinal injury by inhibiting NLRP3 inflammasome activation via AhR signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: In this study, we examined the functions and mechanisms by which naringenin protects against SAP (severe acute pancreatitis)-related intestinal injury by modulating the AhR/NLRP3 signaling pathway.

          Material and methods: Fifteen healthy male C57BL/6 mice were randomly divided into SAP ( n = 12) and normal ( n = 3) groups. Mice in the SAP group received caerulein and lipopolysaccharide intraperitoneal injections and were then randomly assigned to the SAP, NAR, CH223191, and Dexamethasone (DEX) groups. Pathological changes in the pancreatic and intestinal mucosa were observed by Hematoxylin & Eosin (H&E) staining. In vitro, RAW264.7 cells were exposed to lipopolysaccharide and treated with naringenin. The levels of NLRP3, AhR, IL-1β, TNF, and IL-6 in the SAP model and RAW264.7 cells were evaluated by enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (qRT-PCR), western blot, and immunohistochemistry. The nuclear translocation of AhR was shown by immunofluorescence. AutoDockTools was used to predict the conformations of naringenin-AhR binding, and PyMol 2.4 was used to visualize the conformations.

          Results: Mouse pancreatic and intestinal injury was alleviated by treatment with naringenin. Naringenin inhibited the activation of the NLRP3 inflammasome and inhibited damage to intestinal tight junctions. Moreover, naringenin increased AhR nuclear translocation and activated the AhR pathway.

          Conclusion: Naringenin can reduce SAP-associated intestinal injury by inhibiting the activation of the NLRP3 inflammasome via the AhR signaling pathway.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          TCMSP: a database of systems pharmacology for drug discovery from herbal medicines

          Background Modern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed. Description The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski’s rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development. Conclusions The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation

            The NLRP3 inflammasome is a critical component of the innate immune system that mediates caspase-1 activation and the secretion of proinflammatory cytokines IL-1β/IL-18 in response to microbial infection and cellular damage. However, the aberrant activation of the NLRP3 inflammasome has been linked with several inflammatory disorders, which include cryopyrin-associated periodic syndromes, Alzheimer’s disease, diabetes, and atherosclerosis. The NLRP3 inflammasome is activated by diverse stimuli, and multiple molecular and cellular events, including ionic flux, mitochondrial dysfunction, and the production of reactive oxygen species, and lysosomal damage have been shown to trigger its activation. How NLRP3 responds to those signaling events and initiates the assembly of the NLRP3 inflammasome is not fully understood. In this review, we summarize our current understanding of the mechanisms of NLRP3 inflammasome activation by multiple signaling events, and its regulation by post-translational modifications and interacting partners of NLRP3.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              SwissDock, a protein-small molecule docking web service based on EADock DSS

              Most life science processes involve, at the atomic scale, recognition between two molecules. The prediction of such interactions at the molecular level, by so-called docking software, is a non-trivial task. Docking programs have a wide range of applications ranging from protein engineering to drug design. This article presents SwissDock, a web server dedicated to the docking of small molecules on target proteins. It is based on the EADock DSS engine, combined with setup scripts for curating common problems and for preparing both the target protein and the ligand input files. An efficient Ajax/HTML interface was designed and implemented so that scientists can easily submit dockings and retrieve the predicted complexes. For automated docking tasks, a programmatic SOAP interface has been set up and template programs can be downloaded in Perl, Python and PHP. The web site also provides an access to a database of manually curated complexes, based on the Ligand Protein Database. A wiki and a forum are available to the community to promote interactions between users. The SwissDock web site is available online at http://www.swissdock.ch. We believe it constitutes a step toward generalizing the use of docking tools beyond the traditional molecular modeling community.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                13 January 2023
                2023
                : 14
                : 1090261
                Affiliations
                The Affiliated Hospital of Qingdao University , Qingdao, China
                Author notes

                Edited by: Olumayokun Olajide, University of Huddersfield, United Kingdom

                Reviewed by: Yuxiang Fei, China Pharmaceutical University, China

                Vanessa D’Antongiovanni, University of Pisa, Italy

                *Correspondence: Xinting Pan, 0536pxt@ 123456163.com

                This article was submitted to Inflammation Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                1090261
                10.3389/fphar.2023.1090261
                9881748
                36713830
                7627c812-806b-4cbf-aebb-77071ddfda96
                Copyright © 2023 Yan, Lin, Zhu, Zhang, Song and Pan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 November 2022
                : 02 January 2023
                Funding
                National Natural Science Foundation of China (grant number 81870440).
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                severe acute pancreatitis,intestinal injury,naringenin,ahr,nlrp3 inflammasome

                Comments

                Comment on this article