1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Exposure of the U.S. Population to Bisphenol A and 4-tertiary-Octylphenol: 2003–2004

          Background Bisphenol A (BPA) and 4-tertiary-octylphenol (tOP) are industrial chemicals used in the manufacture of polycarbonate plastics and epoxy resins (BPA) and nonionic surfactants (tOP). These products are in widespread use in the United States. Objectives We aimed to assess exposure to BPA and tOP in the U.S. general population. Methods We measured the total (free plus conjugated) urinary concentrations of BPA and tOP in 2,517 participants ≥ 6 years of age in the 2003–2004 National Health and Nutrition Examination Survey using automated solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry. Results BPA and tOP were detected in 92.6% and 57.4% of the persons, respectively. Least square geometric mean (LSGM) concentrations of BPA were significantly lower in Mexican Americans than in non-Hispanic blacks (p = 0.006) and non-Hispanic whites (p = 0.007); LSGM concentrations for non-Hispanic blacks and non-Hispanic whites were not statistically different (p = 0.21). Females had statistically higher BPA LSGM concentrations than males (p = 0.043). Children had higher concentrations than adolescents (p $45,000/year). Conclusions Urine concentrations of total BPA differed by race/ethnicity, age, sex, and household income. These first U.S. population representative concentration data for urinary BPA and tOP should help guide public health research priorities, including studies of exposure pathways, potential health effects, and risk assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prenatal Phenol and Phthalate Exposures and Birth Outcomes

            Background Many phthalates and phenols are hormonally active and are suspected to alter the course of development. Objective We investigated prenatal exposures to phthalate and phenol metabolites and their associations with body size measures of the infants at birth. Methods We measured 5 phenol and 10 phthalate urinary metabolites in a multiethnic cohort of 404 women in New York City during their third trimester of pregnancy and recorded size of infants at birth. Results Median urinary concentrations were > 10 μg/L for 2 of 5 phenols and 6 of 10 phthalate monoester metabolites. Concentrations of low-molecular-weight phthalate monoesters (low-MWP) were approximately 5-fold greater than those of high-molecular-weight metabolites. Low-MWP metabolites had a positive association with gestational age [0.97 day gestational age per ln-biomarker; 95% confidence interval (CI), 0.07–1.9 days, multivariate adjusted] and with head circumference. Higher prenatal exposures to 2,5-dichlorophenol (2,5-DCP) predicted lower birth weight in boys (−210 g average birth weight difference between the third tertile and first tertile of 2,5-DCP; 95% CI, 71–348 g). Higher maternal benzophenone-3 (BP3) concentrations were associated with a similar decrease in birth weight among girls but with greater birth weight in boys. Conclusions We observed a range of phthalate and phenol exposures during pregnancy in our population, but few were associated with birth size. The association of 2,5-DCP and BP3 with reduced or increased birth weight could be important in very early or small-size births. In addition, positive associations of urinary metabolites with some outcomes may be attributable partly to unresolved confounding with maternal anthropometric factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification

              Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with hormone action, thereby increasing the risk of adverse health outcomes, including cancer, reproductive impairment, cognitive deficits and obesity. A complex literature of mechanistic studies provides evidence on the hazards of EDC exposure, yet there is no widely accepted systematic method to integrate these data to help identify EDC hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we have developed ten KCs of EDCs based on our knowledge of hormone actions and EDC effects. In this Expert Consensus Statement, we describe the logic by which these KCs are identified and the assays that could be used to assess several of these KCs. We reflect on how these ten KCs can be used to identify, organize and utilize mechanistic data when evaluating chemicals as EDCs, and we use diethylstilbestrol, bisphenol A and perchlorate as examples to illustrate this approach.
                Bookmark

                Author and article information

                Journal
                Journal of Exposure Science & Environmental Epidemiology
                J Expo Sci Environ Epidemiol
                Springer Science and Business Media LLC
                1559-0631
                1559-064X
                July 23 2020
                Article
                10.1038/s41370-020-0253-z
                762dd5c0-8df7-4894-b559-2093731e890d
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm


                Comments

                Comment on this article