12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Continuous low-dose fructose infusion does not reverse glucagon-mediated decrease in hepatic glucose utilization.

      Metabolism
      Animals, Body Weight, drug effects, Dogs, Female, Fructose, pharmacology, Glucagon, antagonists & inhibitors, metabolism, Glucokinase, Glucose, Glycolysis, Hemodynamics, Hormones, blood, Hypoglycemic Agents, Insulin, Liver, Male, Organ Size, Pancreatectomy, Parenteral Nutrition, Total, Phosphofructokinase-1

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An adaptation to continuous total parenteral nutrition (TPN; 75% of nonprotein calories as glucose) is the liver becomes a major consumer of glucose with lactate release as a by-product. The liver is able to further increase liver glucose uptake when a small dose of fructose is acutely infused via the portal system. Glucagon, commonly elevated during inflammatory stress, is a potent inhibitor of glucose uptake by the liver during TPN. The aim was to determine if continuous fructose infusion could overcome the glucagon-mediated decrease in hepatic glucose uptake. Studies were performed in conscious, insulin-treated, chronically catheterized, pancreatectomized dogs that adapted to TPN for 33 hours. They were then assigned to 1 of 4 groups: TPN (C), TPN + fructose (4.4 μmol kg(-1) min(-1); F), TPN + glucagon (0.2 pmol kg(-1) min(-1); GGN), or TPN + fructose and glucagon (F + GGN) for an additional 63 hours (33-96 hours). Insulin, fructose, and glucagon were infused into the portal vein. During that period, all animals received a fixed insulin infusion of 0.4 mU·kg(-1)·min(-1) (33-96 hours); and the glucose infusion rates were adjusted to maintain euglycemia (6.6 mmol/L). Continuous fructose infusion was unable to further enhance net hepatic glucose uptake (in micromoles per kilogram per minute) (31.1 ± 2.8 vs 36.1 ± 5.0; C vs F), nor was it able to overcome glucagon-mediated decrease in net hepatic glucose uptake (10.0 ± 4.4 vs 12.2 ± 3.9; GGN vs F + GGN). In summary, continuous fructose infusion cannot augment liver glucose uptake during TPN; nor can it overcome the inhibitory effects of glucagon. Copyright © 2011 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article