33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Antiquity and Evolutionary History of Social Behavior in Bees

      * ,

      PLoS ONE

      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives.

          Related collections

          Most cited references 110

          • Record: found
          • Abstract: not found
          • Article: not found

          The Bees of the World

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogeny of the ants: diversification in the age of angiosperms.

             C. Moreau (2006)
            We present a large-scale molecular phylogeny of the ants (Hymenoptera: Formicidae), based on 4.5 kilobases of sequence data from six gene regions extracted from 139 of the 288 described extant genera, representing 19 of the 20 subfamilies. All but two subfamilies are recovered as monophyletic. Divergence time estimates calibrated by minimum age constraints from 43 fossils indicate that most of the subfamilies representing extant ants arose much earlier than previously proposed but only began to diversify during the Late Cretaceous to Early Eocene. This period also witnessed the rise of angiosperms and most herbivorous insects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ancestral monogamy shows kin selection is key to the evolution of eusociality.

              Close relatedness has long been considered crucial to the evolution of eusociality. However, it has recently been suggested that close relatedness may be a consequence, rather than a cause, of eusociality. We tested this idea with a comparative analysis of female mating frequencies in 267 species of eusocial bees, wasps, and ants. We found that mating with a single male, which maximizes relatedness, is ancestral for all eight independent eusocial lineages that we investigated. Mating with multiple males is always derived. Furthermore, we found that high polyandry (>2 effective mates) occurs only in lineages whose workers have lost reproductive totipotency. These results provide the first evidence that monogamy was critical in the evolution of eusociality, strongly supporting the prediction of inclusive fitness theory.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                13 June 2011
                : 6
                : 6
                Affiliations
                Department of Entomology, Cornell University, Ithaca, New York, United States of America
                Field Museum of Natural History, United States of America
                Author notes

                Conceived and designed the experiments: SC BND. Performed the experiments: SC. Analyzed the data: SC. Contributed reagents/materials/analysis tools: BND. Wrote the paper: SC BND.

                Article
                PONE-D-10-02127
                10.1371/journal.pone.0021086
                3113908
                21695157
                Cardinal, Danforth. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Systematics
                Cladistics
                Molecular Systematics
                Phylogenetics
                Taxonomy
                Organismal Evolution
                Animal Evolution
                Animal Behavior
                Zoology
                Animal Phylogenetics
                Animal Taxonomy
                Entomology

                Uncategorized

                Comments

                Comment on this article