29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Agonistic Properties of Cannabidiol at 5-HT1a Receptors

      , , ,
      Neurochemical Research
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cannabidiol (CBD) is a major, biologically active, but psycho-inactive component of cannabis. In this cell culture-based report, CBD is shown to displace the agonist, [3H]8-OH-DPAT from the cloned human 5-HT1a receptor in a concentration-dependent manner. In contrast, the major psychoactive component of cannabis, tetrahydrocannabinol (THC) does not displace agonist from the receptor in the same micromolar concentration range. In signal transduction studies, CBD acts as an agonist at the human 5-HT1a receptor as demonstrated in two related approaches. First, CBD increases [35S]GTPgammaS binding in this G protein coupled receptor system, as does the known agonist serotonin. Second, in this GPCR system, that is negatively coupled to cAMP production, both CBD and 5-HT decrease cAMP concentration at similar apparent levels of receptor occupancy, based upon displacement data. Preliminary comparative data is also presented from the cloned rat 5-HT2a receptor suggesting that CBD is active, but less so, relative to the human 5-HT1a receptor, in binding analyses. Overall, these studies demonstrate that CBD is a modest affinity agonist at the human 5-HT1a receptor. Additional work is required to compare CBD's potential at other serotonin receptors and in other species. Finally, the results indicate that cannabidiol may have interesting and useful potential beyond the realm of cannabinoid receptors.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            International Union of Pharmacology. XXVII. Classification of cannabinoid receptors.

            A Howlett (2002)
            Two types of cannabinoid receptor have been discovered so far, CB(1) (2.1: CBD:1:CB1:), cloned in 1990, and CB(2) (2.1:CBD:2:CB2:), cloned in 1993. Distinction between these receptors is based on differences in their predicted amino acid sequence, signaling mechanisms, tissue distribution, and sensitivity to certain potent agonists and antagonists that show marked selectivity for one or the other receptor type. Cannabinoid receptors CB(1) and CB(2) exhibit 48% amino acid sequence identity. Both receptor types are coupled through G proteins to adenylyl cyclase and mitogen-activated protein kinase. CB(1) receptors are also coupled through G proteins to several types of calcium and potassium channels. These receptors exist primarily on central and peripheral neurons, one of their functions being to inhibit neurotransmitter release. Indeed, endogenous CB(1) agonists probably serve as retrograde synaptic messengers. CB(2) receptors are present mainly on immune cells. Such cells also express CB(1) receptors, albeit to a lesser extent, with both receptor types exerting a broad spectrum of immune effects that includes modulation of cytokine release. Of several endogenous agonists for cannabinoid receptors identified thus far, the most notable are arachidonoylethanolamide, 2-arachidonoylglycerol, and 2-arachidonylglyceryl ether. It is unclear whether these eicosanoid molecules are the only, or primary, endogenous agonists. Hence, we consider it premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. Although pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging, other kinds of supporting evidence are still lacking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide.

              1. (-)-Cannabidiol (CBD) is a non-psychotropic component of Cannabis with possible therapeutic use as an anti-inflammatory drug. Little is known on the possible molecular targets of this compound. We investigated whether CBD and some of its derivatives interact with vanilloid receptor type 1 (VR1), the receptor for capsaicin, or with proteins that inactivate the endogenous cannabinoid, anandamide (AEA). 2. CBD and its enantiomer, (+)-CBD, together with seven analogues, obtained by exchanging the C-7 methyl group of CBD with a hydroxy-methyl or a carboxyl function and/or the C-5' pentyl group with a di-methyl-heptyl (DMH) group, were tested on: (a) VR1-mediated increase in cytosolic Ca(2+) concentrations in cells over-expressing human VR1; (b) [(14)C]-AEA uptake by RBL-2H3 cells, which is facilitated by a selective membrane transporter; and (c) [(14)C]-AEA hydrolysis by rat brain membranes, which is catalysed by the fatty acid amide hydrolase. 3. Both CBD and (+)-CBD, but not the other analogues, stimulated VR1 with EC(50)=3.2 - 3.5 microM, and with a maximal effect similar in efficacy to that of capsaicin, i.e. 67 - 70% of the effect obtained with ionomycin (4 microM). CBD (10 microM) desensitized VR1 to the action of capsaicin. The effects of maximal doses of the two compounds were not additive. 4. (+)-5'-DMH-CBD and (+)-7-hydroxy-5'-DMH-CBD inhibited [(14)C]-AEA uptake (IC(50)=10.0 and 7.0 microM); the (-)-enantiomers were slightly less active (IC(50)=14.0 and 12.5 microM). 5. CBD and (+)-CBD were also active (IC(50)=22.0 and 17.0 microM). CBD (IC(50)=27.5 microM), (+)-CBD (IC(50)=63.5 microM) and (-)-7-hydroxy-CBD (IC(50)=34 microM), but not the other analogues (IC(50)>100 microM), weakly inhibited [(14)C]-AEA hydrolysis. 6. Only the (+)-isomers exhibited high affinity for CB(1) and/or CB(2) cannabinoid receptors. 7. These findings suggest that VR1 receptors, or increased levels of endogenous AEA, might mediate some of the pharmacological effects of CBD and its analogues. In view of the facile high yield synthesis, and the weak affinity for CB(1) and CB(2) receptors, (-)-5'-DMH-CBD represents a valuable candidate for further investigation as inhibitor of AEA uptake and a possible new therapeutic agent.
                Bookmark

                Author and article information

                Journal
                Neurochemical Research
                Neurochem Res
                Springer Science and Business Media LLC
                0364-3190
                1573-6903
                August 2005
                August 2005
                : 30
                : 8
                : 1037-1043
                Article
                10.1007/s11064-005-6978-1
                16258853
                765c50cd-2da3-4ef8-acad-018882846f9f
                © 2005

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article