11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1.

      Brain research. Brain research reviews
      Adipocytes, metabolism, pathology, Adipose Tissue, Cytokines, blood, Fibrinolysis, Humans, Hypoglycemic Agents, therapeutic use, Insulin, Metabolic Syndrome X, Obesity, drug therapy, Plasminogen Activator Inhibitor 1, biosynthesis, Risk

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obesity is the central promoter of the metabolic syndrome which also includes disturbed fibrinolysis in addition to hypertension, dyslipidaemia and impaired glucose tolerance/type 2 diabetes mellitus. Plasminogen activator inhibitor-1 (PAI-1) is the most important endogenous inhibitor of tissue plasminogen activator and uro-plasminogen activator, and is a main determinant of fibrinolytic activity. There is now compelling evidence that obesity and, in particular, an abdominal type of body fat distribution are associated with elevated PAI-1 antigen and activity levels. Recent studies established that PAI-1 is expressed in adipose tissue. The greater the fat cell size and the adipose tissue mass, the greater is the contribution of adipose production to circulating PAI-1. Experimental data show that visceral adipose tissue has a higher capacity to produce PAI-1 than subcutaneous adipose tissue. Studies in human adipocytes indicate that PAI-1 synthesis is upregulated by insulin, glucocorticoids, angiotensin II, some fatty acids and, most potently, by cytokines such as tumour necrosis factor-alpha and transforming growth factor-beta, whereas catecholamines reduce PAI-1 production. Interestingly, pharmacological agents such as thiazolidinediones, metformin and AT(1)-receptor antagonists were found to reduce adipose expression of PAI-1. In addition, weight loss by dietary restriction or comprehensive lifestyle modification is effective in lowering PAI-1 plasma levels. In conclusion, impaired fibrinolysis in obesity is probably also due to an increased expression of PAI-1 in adipose tissue. An altered function of the endocrine system and an impaired auto-/paracrine function at the fat cell levels may mediate this disturbance of the fibrinolytic system and thereby increase the risk for cardiovascular disease..

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group.

          Increased levels of certain hemostatic factors may play a part in the development of acute coronary syndromes and may be associated with an increased risk of coronary events in patients with angina pectoris. We conducted a prospective multicenter study of 3043 patients with angina pectoris who underwent coronary angiography and were followed for two years. Base-line measurements included the concentrations of selected hemostatic factors indicative of a thrombophilic state or endothelial injury. The results were analyzed in relation to the subsequent incidence of myocardial infarction or sudden coronary death. After adjustment for the extent of coronary artery disease and other risk factors, an increased incidence of myocardial infarction or sudden death was associated with higher base-line concentrations of fibrinogen (mean +/- SD, 3.28 +/- 0.74 g per liter in patients who subsequently had coronary events, as compared with 3.00 +/- 0.71 g per liter in those who did not; P = 0.01), von Willebrand factor antigen (138 +/- 49 percent vs. 125 +/- 49 percent, P = 0.05), and tissue plasminogen activator (t-PA) antigen (11.9 +/- 4.7 ng per milliliter vs. 10.0 +/- 4.2 ng per milliliter, P = 0.02). The concentration of C-reactive protein was also directly correlated with the incidence of coronary events (P = 0.05), except when we adjusted for the fibrinogen concentration. In patients with high serum cholesterol levels, the risk of coronary events rose with increasing levels of fibrinogen and C-reactive protein, but the risk remained low even given high serum cholesterol levels in the presence of low fibrinogen concentrations. In patients with angina pectoris, the levels of fibrinogen, von Willebrand factor antigen, and t-PA antigen are independent predictors of subsequent acute coronary syndromes. In addition, low fibrinogen concentrations characterize patients at low risk for coronary events despite increased serum cholesterol levels. Our data are consistent with a pathogenetic role of impaired fibrinolysis, endothelial-cell injury, and inflammatory activity in the progression of coronary artery disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity.

            The presence of obesity increases the risk of thrombotic vascular diseases. The role of fat accumulation and its effect on plasminogen activator inhibitor-1 (PAI-1) levels was investigated in humans and animals. Plasma PAI-1 levels were closely correlated with visceral fat area but not with subcutaneous fat area in human subjects. PAI-1 mRNA was detected in both types of fat tissue in obese rats but increased only in visceral fat during the development of obesity. These data suggest that an enhanced expression of the PAI-1 gene in visceral fat may increase plasma levels and may have a role in the development of vascular disease in visceral obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity.

              In adipose tissue from both obese mice and humans, plasminogen activator inhibitor 1 (PAI-1) expression has been reported to be upregulated to levels of increased plasma PAI-1. This elevated expression has been shown to be partly controlled by tumor necrosis factor (TNF)-alpha in mice. In humans, increased PAI-1 expression is associated with insulin resistance characterized by visceral fat accumulation. Therefore, the aim of this study was to investigate the expression pattern of PAI-1 and TNF-alpha (antigen and mRNA) in visceral human adipose fat in comparison with subcutaneous (SC) fat. Because transforming growth factor (TGF)-beta1 is a potent inducer of PAI-1 synthesis and has been shown to influence adipocyte metabolism, this work was extended to TGF-beta1 quantification. A total of 32 obese individuals (BMI 42 +/- 6.8 kg/m2) were investigated. Freshly collected visceral adipose tissue did not exhibit a higher content of PAI-1 or TGF-beta1 than did SC tissue. Although most of the TNF-alpha values were at the detection limit of the methods, TNF-alpha antigen was 3-fold higher and TNF-alpha mRNA was 1.2-fold higher in visceral fat. The levels of tissue TGF-beta1 antigen correlated well with those of PAI-1 antigen, regardless of the fat depot studied (SC tissue: n = 21, r = 0.72, P = 0.0006; visceral tissue: n = 20, r = 0.49, P < 0.03), and they were both significantly associated with BMI. Conversely, no relationship was observed between the levels of TNF-alpha and PAI-1 or TNF-alpha and BMI. Tissue PAI-1 levels were also significantly correlated with those of circulating PAI-1. These results describe, in severe obesity, a proportional increase in tissue PAI-1 and TGF-beta1 in visceral and SC tissues. This increased PAI-1 expression could be the result of tissue cytokine disturbances, such as elevated TGF-beta1 expression.
                Bookmark

                Author and article information

                Comments

                Comment on this article