27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperalgesia and Reduced Offset Analgesia During Spinal Anesthesia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Spinal anesthesia induces short-term deafferentation and causes connectivity changes in brain areas involved in endogenous pain modulation. We determined whether spinal anesthesia alters pain sensitivity and offset analgesia. Offset analgesia is a manifestation of endogenous pain modulation and characterized by profound analgesia upon a small decrease in noxious stimulation.

          Methods

          In this randomized controlled crossover trial, static thermal pain responses and offset analgesia were obtained in 22 healthy male volunteers during spinal anesthesia and control conditions (absence of spinal anesthesia). Pain responses and offset analgesia were measured on a remote skin area above the upper level of anesthesia (C8/Th1).

          Results

          Following spinal injection of the local anesthetic, the average maximum anesthesia level was Th6. Static pain scores at C8/Th1 were higher during spinal anesthesia compared to control: 59.1 ± 15.0 mm (spinal anesthesia) versus 51.7 ± 19.7 mm (control; p = 0.03). Offset analgesia responses were decreased during spinal analgesia: pain score decrease 79 ± 27% (spinal anesthesia) versus 90 ± 17% (control; p = 0.016).

          Discussion

          We confirmed that spinal anesthesia-induced deafferentation causes hyperalgesic responses to noxious thermal stimulation and reduced offset analgesia at dermatomes remote and above the level of deafferentation. While these data suggest that the reduction of offset analgesia has a central origin, related to alterations in brain areas involved in inhibitory pain control, we cannot exclude alternative (peripheral) mechanisms.

          Trial Registration

          Dutch Cochrane Center under identifier ( www.trialregister.nl ) NL3874.

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Tapentadol potentiates descending pain inhibition in chronic pain patients with diabetic polyneuropathy.

          Tapentadol is an analgesic agent for treatment of acute and chronic pain that activates the µ-opioid receptor combined with inhibition of neuronal norepinephrine reuptake. Both mechanisms are implicated in activation of descending inhibitory pain pathways. In this study, we investigated the influence of tapentadol on conditioned pain modulation (CPM, an experimental measure of endogenous pain inhibition that gates incoming pain signals as a consequence of a preceding tonic painful stimulus) and offset analgesia (OA, a test in which a disproportionally large amount of analgesia becomes apparent upon a slight decrease in noxious heat stimulation).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large-scale reorganization of the somatosensory cortex following spinal cord injuries is due to brainstem plasticity.

            Adult mammalian brains undergo reorganization following deafferentations due to peripheral nerve, cortical or spinal cord injuries. The largest extent of cortical reorganization is seen in area 3b of the somatosensory cortex of monkeys with chronic transection of the dorsal roots or dorsal columns of the spinal cord. These injuries cause expansion of intact face inputs into the deafferented hand cortex, resulting in a change of representational boundaries by more than 7 mm. Here we show that large-scale reorganization in area 3b following spinal cord injuries is due to changes at the level of the brainstem nuclei and not due to cortical mechanisms. Selective inactivation of the reorganized cuneate nucleus of the brainstem eliminates observed face expansion in area 3b. Thus, the substrate for the observed expanded face representation in area 3b lies in the cuneate nucleus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

              The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                jpr
                jpainres
                Journal of Pain Research
                Dove
                1178-7090
                24 August 2020
                2020
                : 13
                : 2143-2149
                Affiliations
                [1 ]Department of Anesthesiology, Leiden University Medical Center , Leiden, RC 2300, the Netherlands
                Author notes
                Correspondence: Marieke Niesters Department of Anesthesiology, Leiden University Medical Center , H5-022, Leiden, RC2300, the Netherlands Email m.niesters@lumc.nl
                Author information
                http://orcid.org/0000-0001-8540-2612
                http://orcid.org/0000-0002-0289-6432
                http://orcid.org/0000-0003-3161-3945
                Article
                258533
                10.2147/JPR.S258533
                7519835
                766e1783-0064-4724-ac89-f39ff7fdb399
                © 2020 Sitsen et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 16 April 2020
                : 11 August 2020
                Page count
                Figures: 3, References: 27, Pages: 7
                Categories
                Original Research

                Anesthesiology & Pain management
                spinal anesthesia,analgesia,pain responses,hyperalgesia,deafferentation

                Comments

                Comment on this article