8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metal Cluster Models for Heterogeneous Catalysis: A Matrix-Isolation Perspective

      1 , 1
      Chemistry - A European Journal
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references317

          • Record: found
          • Abstract: not found
          • Article: not found

          Gas-Phase Catalysis by Atomic and Cluster Metal Ions: The Ultimate Single-Site Catalysts

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticles for heterogeneous catalysis: new mechanistic insights.

            Metallic nanoparticles finely dispersed over oxide supports have found use as heterogeneous catalysts in many industries including chemical manufacturing, energy-related applications and environmental remediation. The compositional and structural complexity of such nanosized systems offers many degrees of freedom for tuning their catalytic properties. However, fully rational design of heterogeneous catalysts based on an atomic-level understanding of surface processes remains an unattained goal in catalysis research. Researchers have used surface science methods and metal single crystals to explore elementary processes in heterogeneous catalysis. In this Account, we use more realistic materials that capture part of the complexity inherent to industrial catalysts. We assess the impacts on the overall catalytic performance of characteristics such as finite particle size, particle structure, particle chemical composition, flexibility of atoms in clusters, and metal-support interactions. To prepare these materials, we grew thin oxide films on metal single crystals under ultrahigh vacuum conditions and used these films as supports for metallic nanoparticles. We present four case studies on specifically designed materials with properties that expand our atomic-level understanding of surface chemistry. Specifically, we address (1) the effect of dopants in the oxide support on the growth of metal nanoclusters; (2) the effects of size and structural flexibility of metal clusters on the binding energy of gas-phase adsorbates and their catalytic activity; (3) the role of surface modifiers, such as carbon, on catalytic activity and selectivity; and (4) the structural and compositional changes of the active surface as a result of strong metal-support interaction. Using these examples, we demonstrate how studies of complex nanostructured materials can help revealing atomic processes at the solid-gas interface of heterogeneous catalysts. Among our findings is that doping of oxide materials opens promising routes to alter the morphology and electronic properties of supported metal particles and to induce the direct dissociation and reaction of molecules bound to the oxide surface. Also, the small size and atomic flexibility of metal clusters can have an important influence on gas adsorption and catalytic performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts.

              Heterogeneous catalysis, a field important industrially and scientifically, is increasingly seeking and refining strategies to render itself more predictable. The main issue is due to the nature and the population of catalytically active sites. Their number is generally low to very low, their "acid strengths" or " redox properties" are not homogeneous, and the material may display related yet inactive sites on the same material. In many heterogeneous catalysts, the discovery of a structure-activity reationship is at best challenging. One possible solution is to generate single-site catalysts in which most, if not all, of the sites are structurally identical. Within this context and using the right tools, the catalyst structure can be designed and well-defined, to reach a molecular understanding. It is then feasible to understand the structure-activity relationship and to develop predictable heterogeneous catalysis. Single-site well-defined heterogeneous catalysts can be prepared using concepts and tools of surface organometallic chemistry (SOMC). This approach operates by reacting organometallic compounds with surfaces of highly divided oxides (or of metal nanoparticles). This strategy has a solid track record to reveal structure-activity relationship to the extent that it is becoming now quite predictable. Almost all elements of the periodical table have been grafted on surfaces of oxides (from simple oxides such as silica or alumina to more sophisticated materials regarding composition or porosity). Considering catalytic hydrocarbon transformations, heterogeneous catalysis outcome may now be predicted based on existing mechanistic proposals and the rules of molecular chemistry (organometallic, organic) associated with some concepts of surface sciences. A thorough characterization of the grafted metal centers must be carried out using tools spanning from molecular organometallic or surface chemistry. By selection of the metal, its ligand set, and the support taken as a X, L ligands in the Green formalism, the catalyst can be designed and generated by grafting the organometallic precursor containing the functional group(s) suitable to target a given transformation (surface organometallic fragments (SOMF)). The choice of these SOMF is based on the elementary steps known in molecular chemistry applied to the desired reaction. The coordination sphere necessary for any catalytic reaction involving paraffins, olefins, and alkynes also can thus be predicted. Only their most complete understanding can allow development of catalytic reactions with the highest possible selectivity, activity, and lifetime. This Account will examine the results of SOMC for hydrocarbon transformations on oxide surfaces bearing metals of group 4-6. The silica-supported catalysts are exhibiting remarkable performances for Ziegler-Natta polymerization and depolymerization, low temperature hydrogenolysis of alkanes and waxes, metathesis of alkanes and cycloalkanes, olefins metathesis, and related reactions. In the case of reactions involving molecules that do not contain carbon (water-gas shift, NH3 synthesis, etc.) this single site approach is also valid but will be considered in a later review.
                Bookmark

                Author and article information

                Journal
                Chemistry - A European Journal
                Chem. Eur. J.
                Wiley
                09476539
                June 26 2018
                June 26 2018
                April 17 2018
                : 24
                : 36
                : 8941-8961
                Affiliations
                [1 ]Anorganisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
                Article
                10.1002/chem.201706097
                76760f28-e7ef-4d5d-8d90-d0f776a684b4
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article