20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The First Phylogeographic Population Structure and Analysis of Transmission Dynamics of M. africanum West African 1— Combining Molecular Data from Benin, Nigeria and Sierra Leone

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycobacterium africanum is an important cause of tuberculosis (TB) in West Africa. So far, two lineages called M. africanum West African 1 (MAF1) and M. africanum West African 2 (MAF2) have been defined. Although several molecular studies on MAF2 have been conducted to date, little is known about MAF1. As MAF1 is mainly present in countries around the Gulf of Guinea we aimed to estimate its prevalence in Cotonou, the biggest city in Benin. Between 2005–06 we collected strains in Cotonou/Benin and genotyped them using spoligo- and 12-loci-MIRU-VNTR-typing. Analyzing 194 isolates, we found that 31% and 6% were MAF1 and MAF2, respectively. Therefore Benin is one of the countries with the highest prevalence (37%) of M. africanum in general and MAF1 in particular. Moreover, we combined our data from Benin with publicly available genotyping information from Nigeria and Sierra Leone, and determined the phylogeographic population structure and genotypic clustering of MAF1. Within the MAF1 lineage, we identified an unexpected great genetic variability with the presence of at least 10 sub-lineages. Interestingly, 8 out of 10 of the discovered sub-lineages not only clustered genetically but also geographically. Besides showing a remarkable local restriction to certain regions in Benin and Nigeria, the sub-lineages differed dramatically in their capacity to transmit within the human host population. While identifying Benin as one of the countries with the highest overall prevalence of M. africanum, this study also contains the first detailed description of the transmission dynamics and phylogenetic composition of the MAF1 lineage.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Genotyping of Genetically Monomorphic Bacteria: DNA Sequencing in Mycobacterium tuberculosis Highlights the Limitations of Current Methodologies

          Because genetically monomorphic bacterial pathogens harbour little DNA sequence diversity, most current genotyping techniques used to study the epidemiology of these organisms are based on mobile or repetitive genetic elements. Molecular markers commonly used in these bacteria include Clustered Regulatory Short Palindromic Repeats (CRISPR) and Variable Number Tandem Repeats (VNTR). These methods are also increasingly being applied to phylogenetic and population genetic studies. Using the Mycobacterium tuberculosis complex (MTBC) as a model, we evaluated the phylogenetic accuracy of CRISPR- and VNTR-based genotyping, which in MTBC are known as spoligotyping and Mycobacterial Interspersed Repetitive Units (MIRU)-VNTR-typing, respectively. We used as a gold standard the complete DNA sequences of 89 coding genes from a global strain collection. Our results showed that phylogenetic trees derived from these multilocus sequence data were highly congruent and statistically robust, irrespective of the phylogenetic methods used. By contrast, corresponding phylogenies inferred from spoligotyping or 15-loci-MIRU-VNTR were incongruent with respect to the sequence-based trees. Although 24-loci-MIRU-VNTR performed better, it was still unable to detect all strain lineages. The DNA sequence data showed virtually no homoplasy, but the opposite was true for spoligotyping and MIRU-VNTR, which was consistent with high rates of convergent evolution and the low statistical support obtained for phylogenetic groupings defined by these markers. Our results also revealed that the discriminatory power of the standard 24 MIRU-VNTR loci varied by strain lineage. Taken together, our findings suggest strain lineages in MTBC should be defined based on phylogenetically robust markers such as single nucleotide polymorphisms or large sequence polymorphisms, and that for epidemiological purposes, MIRU-VNTR loci should be used in a lineage-dependent manner. Our findings have implications for strain typing in other genetically monomorphic bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia.

            There is considerable variability in the outcome of Mycobacterium tuberculosis infection. We hypothesized that Mycobacterium africanum was less likely than M. tuberculosis to transmit and progress to tuberculosis disease. In a cohort study of patients with tuberculosis and their household contacts in The Gambia, we categorized 1808 HIV-negative tuberculosis contacts according to exposure to M. tuberculosis or M. africanum. Positive skin test results indicated transmission, and development of tuberculosis during 2 years of follow-up indicated progression to disease. Transmission rates were similar, but rates of progression to disease were significantly lower in contacts exposed to M. africanum than in those exposed to M. tuberculosis (1.0% vs. 2.9%; hazard ratio [HR], 3.1 [95% confidence interval {CI}, 1.1-8.7]). Within M. tuberculosis sensu stricto, contacts exposed to a Beijing family strain were most likely to progress to disease (5.6%; HR relative to M. africanum, 6.7 [95% CI, 2.0-22]). M. africanum and M. tuberculosis transmit equally well to household contacts, but contacts exposed to M. africanum are less likely to progress to tuberculosis disease than those exposed to M. tuberculosis. The variable rate of progression by lineage suggests that tuberculosis variability matters in clinical settings and should be accounted for in studies evaluating tuberculosis vaccines and treatment regimens for latent tuberculosis infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mycobacterium africanum—Review of an Important Cause of Human Tuberculosis in West Africa

              Mycobacterium africanum consists of two phylogenetically distinct lineages within the Mycobacterium tuberculosis complex, known as M. africanum West African 1 and M. africanum West African 2. These lineages are restricted to West Africa, where they cause up to half of human pulmonary tuberculosis. In this review we discuss the definition of M. africanum, describe the prevalence and restricted geographical distribution of M. africanum West African 1 and 2, review the occurrence of M. africanum in animals, and summarize the phenotypic differences described thus far between M. africanum and M. tuberculosis sensu stricto.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                15 October 2013
                : 8
                : 10
                : e77000
                Affiliations
                [1 ]Medical Research Council (MRC) Unit, Fajara, The Gambia
                [2 ]Institute for Tropical Medicine (ITM), Antwerp, Belgium
                [3 ]New York University (NYU), New York, New York, United States of America
                [4 ]Laboratoire de Reference des Mycobacteries, Cotonou, Benin
                Instituto de Higiene e Medicina Tropical, Portugal
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FG DA BDJ MA. Performed the experiments: CU PDR FF MO. Analyzed the data: FG. Contributed reagents/materials/analysis tools: DA. Wrote the paper: FG DA BDJ.

                Article
                PONE-D-13-26514
                10.1371/journal.pone.0077000
                3797137
                24143198
                7676cdbf-f37d-4783-a267-6271f73b2468
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 June 2013
                : 6 September 2013
                Page count
                Pages: 6
                Funding
                The study was supported by a grant from the Belgian Directorate-Generale for Development Co-orporation (DGDC) as part of the “Strategic Network TB 3.14” and the project “Study on M. africanum population structure in Benin and The Gambia” as well as by the European Developing Countries Clinical Trials Partnership (EDCTP) – funded “West African Node of Excellence for Tuberculosis and Malaria” (WANETAM-plus). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article